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HYDRAULIC, DIFFUSION, AND RETENTION CHARACTERISTICS OF 
INORGANIC CHEMICALS IN BENTONITE 

 

Naim Muhammad 

 

ABSTRACT 

 

 Inorganic contaminants, while transported through the bentonite layer, are chemically 

adsorbed onto the particle surfaces and exhibit a delay in solute breakthrough in 

hydraulic barriers.  Transport of inorganic leachate contaminants through bentonite 

occurs by advection, diffusion or a combination of these two mechanisms.  During the 

process of chemical solute transport through low permeability bentonite, the amount of 

cation exchange on the clay particle surface is directly related to the cation exchange 

capacity (CEC) of montmorillonite and other mineral constituents.   

The process of diffusion and advection of various inorganic leachate contaminants 

through bentonite is thoroughly investigated in this study.  Diffusion characteristics are of 

specific interest as they have a prominent effect on the long term properties of bentonite 

compared to advection.  This is mostly true if the hydraulic conductivity of the material is 

less than 10-8 cm/s and if the thickness of the barrier is small.  Chemical reactions in the 

form of cationic exchange on the clay particle surfaces has been incorporated in the 

analysis of the diffusion process.  Adsorption-desorption (sorption) reactions of chemical 

compounds that influence the concentrations of inorganic leachates during transport in 

bentonite clay have been modeled using the Fick’s fundamental diffusion theory.  

Partition coefficients of the solutes in pore space, which affect the retardation factor of 

various individual ions of chemical solutions, have been investigated during transient 

diffusion and advection processes.   
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Several objectives have been accomplished during this research study.  An 

evaluation has been carried out of the hydraulic conductivity of bentonite with respect to 

single species salts and various combinations of electrolyte solutions.  Diffusion 

properties of inorganic leachates through bentonite have been characterized in terms of 

apparent and effective diffusion coefficients.  Time-dependent behavior of the diffusive 

ions has been analyzed in order to determine the total retention capacity of bentonite 

before electrical conductivity breakthrough and steady-state chemical stability are 

reached.  An analytical solution of the attenuation of various inorganic ions 

concentrations through bentonite has been developed.  Finally, recommendations were 

made for landfill liners exposed to highly concentrated inorganic leachates. 
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CHAPTER ONE 
 
 

INTRODUCTION 
 
 
 
1.1  Scope and Significance 

 

One of the main problems in the geoenvironmental field is the intrusion of toxic 

contaminants from waste disposal and other sources into the underlying ground water 

supply.  Clays are commonly used as barriers in landfills, slurry walls, and similar 

structures to slowdown the movement of contaminants because of their higher water 

absorption capacity.  Bentonite clays are also being used as buffers in nuclear fuel waste 

disposal sites to control the spread of radioactive materials into the ground (Hancox, 

1986; Cheung, 1994). 

Bentonite clay, when used in the field as a hydraulic barrier, comes in contact 

with various inorganic chemicals which eventually cause the performance of bentonite 

clay to diminish in terms of permeability and chemical outflux (Anderson et al., 1985; 

Cadena et al., 1990; Chapuis, 1990; Cheung et al., 1980).  Earlier research carried out at 

USF on ash monofill leachate revealed a significant amount of inorganic chemicals such 

as sodium, calcium, magnesium, and potassium, with initial concentrations well above 

the accepted drinking water standard (Muhammad and Ashmawy, 2003).   Attempts were 

made to use an alternate liner system with sand-ash-bentonite mixture to arrest the 

chemical outflux while permeation without much success because of the porous 

structured formed within the mixture. 

Bentonite is a very highly plastic swelling clay of the smectite mineral group, and 

is mineralogically known as “montmorillonite”.   Because of the low permeability of 

bentonite clay, and the low hydraulic gradients to which it is typically subjected, 
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molecular diffusion and advection are both equally important transport mechanisms.  

Molecular diffusion coefficients are therefore important parameters in predicting rates 

and fluxes of various species of contaminants flowing into the natural soils.  Inorganic 

contaminants, while transported through the bentonite layer, are chemically adsorbed 

onto the particle surfaces and experience a delay in solute breakthrough in hydraulic 

barriers.  Transport of inorganic leachate contaminants through bentonite could occur 

either by advection or diffusion or a combination of these two types.  During the process 

of chemical solute transport through a low permeability bentonite layer, cation exchange 

takes place on the clay particle surfaces due to the high cation exchange capacity (CEC) 

of montmorillonite minerals. 

The process of diffusion and advection using various inorganic leachate 

contaminants through bentonite is thoroughly investigated in this dissertation.  Diffusion 

study is particularly interesting in bentonite barriers as it is found to be prominent 

compared to advection, when the hydraulic conductivity of the material is less than 2.0 x 

10-8 cm/s (Shackelford, 1988).  In addition, the diffusion characteristics of bentonite have 

not been thoroughly studied and have gained little attention in the geoenvironmental 

literature until recently.  Chemical reactions in the form of cation exchange on the clay 

particle surfaces must be incorporated during the diffusion process study.  Adsorption-

desorption (sorption) reactions of chemical compounds that influence the concentrations 

of inorganic leachates during transport in bentonite clay may be modeled using Fick’s 

diffusion theory.  “Partition coefficients” of solutes in pore space, which affect the 

retardation factors of various individual ions of chemical solutions, are investigated 

during transient diffusion and advection processes.  

The time dependent degradation of hydraulic conductivity of the bentonite portion 

of conventional geosynthetic clay liners (GCL’s) is an urgent concern particularly for ash 

monofills.  The increase in hydraulic conductivity of bentonite is caused by aggressive 

leachates containing high amounts of divalent or higher valence cations, especially in 

landfills subjected to high percolation. The levels of some soluble metals and chlorides in 

landfill leachates exceed USEPA drinking water standards, indicating the importance of 

liners with high retention capacity of chemical elements that can sustain their 
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characteristics for a long duration.  Since bentonite is used to contain and to reduce the 

flow of liquids in inorganic contaminant environments, further investigation has become 

necessary to validate its usage in retaining certain ions from the leachate solutions before 

reaching chemical equilibrium between influent and effluent.  In addition, the increase in 

hydraulic conductivity of bentonite, caused by leachates containing high amounts of 

divalent or higher valence cations, is investigated in this research study. 

It has been reported that Ca2+ and Mg2+ ions, often present in municipal solid 

waste (MSW) and incinerator ash, can be detrimental to the bentonite if permeated over 

extended periods of time (Petrov and Rowe, 1997).  Due to high cation (+ion) exchange 

capacity (CEC) and isomorphic replaceable characteristics of montmorillonite 

microstructure layers, the increase in hydraulic conductivity of bentonite can even be 

observed within a very short period (48 hours) with highly concentrated ionic solutions.  

The low hydraulic conductivity characteristics of bentonite are caused by the hydration of 

interlayer spacings through a process called “inner-crystalline swelling”.  Further 

adsorption of monovalent cations on the negatively charged interlayer and external 

surfaces (osmotic swelling) causes the formation of the electrical “double layer” in 

between the mutually repellant surfaces and thus causes separation.  As the osmotic 

swelling is only caused by the hydration of monovalent (namely, Na+) ions, presence of 

highly concentrated polyvalent cations will inevitably negate the formation of a dispersed 

clay microstructure and will cause the staggered formation of aggregated clay due to the 

reduction in the thickness of diffuse double layer (Van Olphen, 1977) as shown in figure 

1.1 (Ashmawy, et al. 2002). 

 

 

 

 

 

 

 

 

(a) (c)(b)

Figure 1.1  Schematic Representation of Clay Particles Under (a) Initial Saturation 
with Multivalent Cations; (b) Initial Saturation with Water or Monovalent 
Caions; and (c) Pre-Hydration Followed by Multivalent Cations 

(a) (c)(b)

Figure 1.1  Schematic Representation of Clay Particles Under (a) Initial Saturation 
with Multivalent Cations; (b) Initial Saturation with Water or Monovalent 
Caions; and (c) Pre-Hydration Followed by Multivalent Cations 
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Aggregated formation of bentonite clay layers from a dispersed structure will 

increase the free pore space, thus resulting in higher hydraulic conductivity and higher 

free flow of highly concentrated soluble metallic ions into the ground.  When the 

permeant contains monovalent cations, i.e., no ionic exchange occurs, the amount of 

interlayer bound water and interlayer spacing will vary according to the variation in the 

concentration of the permeated liquid (Jo et al., 2001; Van Olphen 1977).   Since the 

volume of bound water is affected by the size of the hydrated cation, solution pH, and 

anion concentration, these factors also affect the hydraulic conductivity of the bentonite 

(Mitchell, 1993; McBride, 1994; Egloffstein, 1995). 

The rate of cation exchange in a sodium bentonite is dependent on, among many 

other factors, hydraulic gradient, solution concentration, temperature, and time (Mitchell 

1993; Egloffstein 1995).  As the bentonite lining system would be laid underneath the 

leachate collection system in a landfill, the effects of hydraulic gradient and temperature 

would be minimal on the degradation of the hydraulic conductivity of bentonite layer.   

Another potential degradation mechanism involves changes in the mineral 

microstructure.  This is most likely to occur at low pH values due to dissolution of clay 

particles.  Alumina in the octahedral layers of the montmorillonite can be dissolved by 

hydrolysis, thus causing ionic exchange of Al3+ for Na+ in the interlayer spacing and a 

reduction in the amount of bound water (Norrish and Quirk, 1954; Mathers et al., 1956; 

Egloffstein, 1995).   

In this study, inorganic contaminant leachates, such as those typically found in 

ash monofill landfills, were synthesized in the laboratory by combining various chemical 

compounds in deionized (DI) water.  Diffusion and hydraulic conductivity tests were 

conducted on bentonite materials under various boundary conditions, and the 

concentration of various ions, namely, sodium, calcium, potassium and magnesium, of 

influent and effluent solutions were determined at various stages of flow.  The chemical 

composition of the bentonite was determined by Energy dispersive spectroscopy (EDS), 

while mineral compositions were carried out by the XRD method.   

Commercially available Wyo-Ben bentonite was in this study in conjunction with 

various inorganic ions commonly found leachate in contaminants such as NaCl, MgCl2, 
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KCl, and CaCl2.  As the ionic retention capacity of bentonite clay materials can be 

beneficially exploited in various flow barriers, the ion absorption capacity of bentonite 

was determined under various saturation and loading conditions. 

 

 

1.2 Research Objectives 

 

The specific objectives of this research are itemized as follows: 

 

(a) Evaluation of the hydraulic conductivity of the bentonite clay with respect 

to single salts and various combinations of electrolyte solutions under a 

range of hydraulic gradients.  

(b) Evaluation of the change of hydraulic conductivity of the bentonite clay 

for various pre-hydrated conditions, sequencing of inorganic electrolyte 

solutions, testing method (i.e. flexible wall and rigid wall permeameter), 

and porosity values of bentonite clay. 

(c) Determination of “lag time”, breakthrough time, and rate of diffusion of 

various inorganic dissolved salt solutions through bentonite clay under 

various chemical gradients. 

(d) Characterization of diffusion properties of inorganic leachates through the 

bentonite layer in terms of apparent and effective diffusion coefficients, 

and adsorption capacity of the particles under various loading conditions. 

(e) Analysis of the time-dependent behavior of the diffusive ions in order to 

determine the total retention capacity of the bentonite layer before 

electrical conductivity breakthrough and steady-state chemical stability are 

reached. 

In order to achieve the above objectives, it was also very important to characterize 

the bentonite clay material in terms of its chemical compositions and physical and 

hydraulic properties.   
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1.3 Dissertation Outline 

 

Chapter Two of this dissertation presents the general usage of bentonite, 

information related clay mineralogy with detailed bentonite clay mineralogy, permeant 

characteristics, and general background material on water-bentonite interaction.  

Literature review on diffuse-double layer (DDL) of clay particles is also presented in this 

chapter, which includes mathematical models of DDL and the factors that affect the size 

of DDL. 

Characterization of the bentonite used in this research is presented in Chapter 

Three.   Mineral and chemical compositions of bentonite as determined by X-Ray 

Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) methods, respectively, are 

presented in this chapter.  Physical and geotechnical properties of bentonite clay, such as 

grain size distribution, Atterberg limits, specific gravity, swell index, and cation 

exchange capacity with or without synthetic dissolved salts are included. 

Chapter Four presents the experimental apparatus, along with the design concept 

and materials and fabrication of permeability and diffusion equipment.  In order to 

prevent any chemical reaction due to aggressive chemical leachates during permeability, 

modification to conventional flexible wall permeameters were introduced.   

Hydraulic characterization of bentonite clay is discussed in chapter Five of this 

dissertation.  Comparison of hydraulic conductivity test results carried out on flexible 

wall and rigid wall permeameters is discussed in this chapter.  Various factors affecting 

hydraulic conductivity are also discussed.  Results of the chemical analysis of effluent at 

various stages of permeation are presented. 

Chapter Six presents experimental methods of diffusion tests and chemical 

analysis of the diffusant.  IN addition, pH measurements, electrical conductivity (EC), 

and ionic analysis test results are included in this chapter.   

  The fundamentals of transport theory and an analysis of diffusion of chemical 

solutions through bentonite clay are discussed in chapter Seven.  Determination and 

analysis of various diffusion parameters are also discussed.  In this chapter, the main 
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contributions in terms of characterizing the partition coefficient, retention factor, and 

retention capacity of bentonite are presented. 

  Chapter Eight summarizes the research findings and provides recommendations 

for future work. 
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CHAPTER TWO 
 
 

MATERIALS AND METHODOLOGY 
 

 

2.1 Bentonite in Landfills 

 

Bentonite, named after an American geologist who discovered this type of clay in 

about 1890 in Fort Benton, Wyoming, is a clay mineral with expansive characteristics 

and low permeability, where montmorillonite is the main mineral.  Montmorillonite, 

named after a deposit located in southern France, swells when contacted with water 

approximately 900% by volume or 700% by weight.  When hydrated under confinement, 

the bentonite swells to form a low permeability clay layer with the equivalent hydraulic 

protection of several feet of compacted clay when used in traditional landfill applications 

(Bruno, 2002). 

Because of its low permeability characteristics, bentonite clay, with or without 

treated materials, is being used in combination with geosynthetics to form a composite 

commonly known as a geosynthetic clay liner (GCL), which has been in use in the USA 

in the landfill construction since 1988 (Koerner, 1999).  GCLs are rolls of factory-

fabricated thin layers of bentonite clay sandwiched between two geotextile layers or 

glued to a geomembrane which are used in the lining system as well as cover 

construction.  GCLs are used as a hydraulic barrier and/or contaminant layer for leachate, 

either in place of a composite layer or in addition to other layers in bottom landfill lining 

system. 

Due to surrounding environmental conditions and applied superimposed loads, 

conventional compacted clay liners (CCLs) develop internal cracks and shrinkage that 

lead to significant increase in seepage and leakage of contaminant liquid into the ground 
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soil and water.  Bentonite used in GCLs is commonly a sodium bentonite, where sodium 

ions are located in the interstitial water, between clay platelets, in an adsorptive layer that 

results in the bentonite swelling characteristics.  This swelling allows the bentonite to seal 

around penetrations, giving the GCL self sealing characteristics.  During hydration, a 

confined layer of dry bentonite changes into a dense monolithic mass with no observable 

individual particles.  A fully hydrated sodium bentonite layer can have a hydraulic 

conductivity of approximately one hundred times lower than a typical compacted clay 

liner (CCL).  A single GCL of less than 25 mm provides superior hydraulic performance 

than of a meter of typical compacted clay. 

Bentonite, within geosynthetic clay liners, has been used extensively over the past 

two decades, and is being investigated further to improve quality and performance in 

many other applications, including lining systems.   It is also being used as part of landfill 

cover systems in landfill construction (Daniel, 1995).  Besides GCLs, bentonite clay is 

also being used in mixed-in-plant (in-situ) systems, where a mixture of one or two 

different types of soils as a base material is enriched with bentonite to obtain low 

permeability clay base liners (Koch, 2002).  As the mixing of in-situ materials with 

bentonite is becoming popular, the mixed-in-plant option represents a very flexible, fast 

and economical way of landfill construction, especially in European countries (Koch, 

2002).  Bentonite with cement is also used in various construction processes and 

temporary and permanent sealing barriers, such as slurry walls during construction of 

diaphragm walls or cut-off walls.   The technical properties of these materials are well 

documented, and their integrity as a sealing barrier has been demonstrated in field 

applications.  Since the bentonite clay is now processed and produced in bulk in factory, 

its properties and qualities are well documented, which gives the design engineers more 

confidence in predicting its behavior, characteristics and cost analysis in landfill and 

other geotechnical applications (Lin and Benson, 2000).   

 Most of the GCL products manufactured in North America use sodium bentonite 

clay of mass per unit area of 3.2 to 6.0 kg/m2 with an average clay thickness of 4.0 to 6.0 

mm and of hydraulic conductivity typically in the range of 1 x 10-9 to 5 x 10-9 cm/s 
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(Koerner, 1997).  Cross-sections of some of the presently available GCLs are shown in 

figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Cross-Section Sketches of Various GCLs 
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2.2  Bentonite Clay 

 

  Fundamentals of bentonite in terms of its mineralogy, cation exchange capacity, 

and interaction with water are discussed in this sub-section.   

 

 

2.2.1 Basic Clay Mineralogy 

 

Clay minerals are generally classified according to their crystal structure and 

geometry.  Basic elements of clay minerals are two-dimensional arrays of silicon-oxygen 

(Si-O) tetrahedron called “tetrahedral sheet “ and aluminum- or magnesium-oxygen-

hydroxyl (Al-, Mg-O-OH) octahedron called “octahedral sheet”.  The tetrahedron unit in 

a tetrahedral sheet is composed of four equidistant oxygen atoms arranged in the form of 

a tetrahedron with a silicon atom at the center as shown in figure 2.2(a) and (b) (after 

Grim, 1968; Holtz and Kovacs, 1981).  All the bases of tetrahedrons are connected to 

form a single plane in a single sheet, and the tips of oxygen are pointed in the same 

direction.  A top view of the silica sheet, shown in figure 2.2(c), reveals the linkage of the 

silicon atoms with the oxygen that forms a hexagonal network with “holes” in the middle 

(after Warshaw and Roy, 1961). 

The octahedral sheet in clay minerals is a group of octahedron units, which are 

composed of six oxygen atoms or hydroxyl groups positioned at equal distance from each 

other, with an aluminum, magnesium, iron, or other atom at the center as shown in figure 

2.3.   An octahedron unit is shown in figure 2.3(a), and the linkage of octahedron units to 

form an octahedral sheet is shown in figure 2.3(b) (after Grim, 1968).  Octahedral sheets 

are represented as a rectangular diagram, while the schematic diagram of a silica 

tetrahedral sheet or silica is represented by a trapezoid in the clay mineralogy as shown in 

figure 2.4.   
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Figure 2.2  Diagrammatic Sketch Showing Clay Tetrahedral (a) a 
Single Silica Tetrahedron, (b) Isometric View of Silica 
Sheet, and (c) Top View of Silica Sheet (after Holtz and 
Kovacs, 1981)

Oxygens linked to form network 

Outline of bases of silica tetrahedra
Outline of hexagonal silica network 
(2-D), indicates bonds from silicons
to oxygens.
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Figure 2.2  Diagrammatic Sketch Showing Clay Tetrahedral (a) a 
Single Silica Tetrahedron, (b) Isometric View of Silica 
Sheet, and (c) Top View of Silica Sheet (after Holtz and 
Kovacs, 1981)

Oxygens linked to form network 

Outline of bases of silica tetrahedra
Outline of hexagonal silica network 
(2-D), indicates bonds from silicons
to oxygens.
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Figure 2.3   Diagrammatic Sketch Showing Octahedral (a) a Single
Octahedral Unit and (b) the Sheet Structure of the Octahedral 
Units (after Grim, 1968).
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Figure 2.3   Diagrammatic Sketch Showing Octahedral (a) a Single
Octahedral Unit and (b) the Sheet Structure of the Octahedral 
Units (after Grim, 1968).
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Figure 2.4  Sheet Representation 

 

It can be highlighted that two of every three central spaces of an octahedron are 

filled with aluminum atoms, keeping the third one vacant.  The octahedral sheet where 

the anions are hydroxyls and two thirds of its available spaces are filled with cations 

(aluminum) is known as gibbsite as represented by ‘G’ in the alumina lattice shown in 

figure 2.4(b).   The cations in the octahedral sheet can be substituted with other cations 

through a geological process called isomorphous substitution.  When all the available 

spaces of cations are filled with magnesium atoms, the mineral is then called brucite 

shown in figure 2.4(c).  Depending on the combinations of various sheets and cations, 

which in turn form different crystal basic structures, clay minerals have been divided into 

various groups.   

When Al3+ cations are located in two of every three available sites in an 

octahedral sheet, such minerals are known as dioctahedral.  In contrast, when divalent 

cations such as Fe2+, Mg2+, Zn2+, etc., are found to be filled in all the available sites, then 

such clay minerals are called trioctehedral.   

The tetrahedral (T) and octahedral (O) sheets are joined in such a way so as to 

form two-layer clays (T-O), three-layer clays (T-O-T), or mixed-layer clays that are 

mixtures of two and three layers clays.  The linkage between tetrahedral and octahedral 

sheets causes the sharing of oxygen atoms and hydroxyls at their interface.  Clay minerals 

show various types of chemical compositions due to the fact that Al3+ in octahedral sheets 

can be replaced by other trivalent cations, such as Fe3+, Cr3+, or divalent cations, such as 
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Fe2+, Mg2+, Zn2+, or other cations (Faure, 1998).   Furthermore, silicon ions (Si4+) in 

tetrahedral sheets can also be replaced by Al3+ ions due to isomorphous substitution, 

which takes place during the geological formation of various clay minerals.  All these 

substitutions of ions produce excess imbalanced negative charges on the clay particles 

that, in turn, adsorb positively charged cations to the outer surfaces of tetrahedral sheets 

of adjacent clay units in order to satisfy electrical neutrality.  

 

 

2.2.1.1   Classification and Chemical Composition 

 

Clay minerals are classified into groups according to the number of layers and 

their crystal structure.  Each group is divided into subgroups according to their chemical 

composition in octahedral sheets, and further divided into individual species of clay 

minerals.  Clay minerals are mainly divided into two-layer, three-layer, and mixed-layer 

clays as follows: 

 

(a)  Two-Layer Clays (1 : 1 layer = One Tetrahedral : One Octahedral) 

 

Two-layer clay minerals consist of repeated combinations of one layer of 

tetrahedral sheet and one layer of octahedral sheet as shown by a representative sheet in 

figure 2.5.  The repeated sheets are bonded by sharing O2- ions between octahedral 

cations (Al3+) and tetrahedral cations (Si4+) as shown in the structure of a kaolinite layer 

in figure 2.6  (Grim, 1968).  The mineral group of these clays is known as kaolinite with 

each layer thickness of 0.72 nm as shown in a schematic diagram in figure 2.6.  

Depending on the isomorphic substitution of cations of octahedral sheets, kaolinite group 

minerals are further divided into two subgroups, namely, kaolinite (dioctahedral) and 

serpentine (trioctahedral). 
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The common minerals of the kaolinite subgroup are kaolinite and halloysite 

which are represented by the same chemical formula Al2Si2O5(OH)4 –nH2O, where n is 

the number of water molecules that occupy the interlayer spaces of the clay aggregates.  

The value of n is zero for kaolinite clay and 4 for halloysite clay.  The ideal structure of 

the kaolinite subgroup minerals produces no ionic charge imbalance, as shown in figure 

2.7, and therefore no cations are affected in their interlayer spaces.  The individual layers 

are bonded by strong hydrogen bonds between the OH- groups of the octahedral sheet and 

O2- ions of the adjacent tetrahedral sheet.  As hydration is not possible within the 

Figure 2.5  Repeated Sheet Representation for 
1:1 (Tetrahedral : Octahedral) Layer
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Figure 2.6   Diagrammatic Sketch of the Structure of 
the Kaolinite Layer (After Grim, 1968)
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interlayer spaces, kaolinite clays do not commonly swell when submerged in water, 

whereas the halloysite mineral contains a layer of water in its interlayer space which 

causes an increase in layer thickness of 10.1 Å (McBride, 1994).  The interlayer water 

molecules of halloysite mineral can easily be irreversibly removed by slightly increasing 

the temperature, after which it behaves like kaolinite clay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the serpentine subgroup of kaolinite, the gibbsite dioctahedral sheet is replaced 

by a brucite trioctahedral sheet, where three magnesium ions replace two aluminum ions 

and produce ionic balance on its surface.   The chemical formula of serpentine is 

Mg3Si2O5(OH)4 or Fe3
2+Si2O5(OH)4 which is known as greenalite, where three Fe2+ ions 

replace two Al3+ ions in the octahedral sheet. 

 

(b)  Three-Layer Clays (2: 1 layer = two tetrahedral : one octahedral) 

 

These clay minerals consist of an octahedral sheet sandwiched in between two 

sheets of tetrahedrals with the oxygen tips of the tetrahedrons combining with the 

hydroxyls of the octahedron to form a single layer as shown in the figure 2.8 (Holtz and 

Kovacs, 1983;  Faure, 1998).  Depending on their chemical composition, crystal 

Figure  2.7  Charge Distribution on Kaolinite
(after Mitchell, 1993)
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structures and physical properties, these minerals have been divided into six groups, 

namely, pyrophyllite, smectite, vermiculite, mica, brittle mica and chlorite (Faure, 1998).   

 

 

 

 

 

 

 

 

 

 

 

 

[Smectite] is the largest group in the three-layer clays, where the minerals are 

produced due to full or partial replacement of Al3+ in the octahedral sheet and partial 

replacement of Si4+ in the tetrahedral sheet (Grim, 1968, Faure, 1998).  The smectite 

group is divided into two subgroups, namely, dioctahedral when isomorphous 

substitution occurs in alumina (gibbsite) octahedral sheets and silica tetrahedral sheets, 

and trioctahedral when substitution occurs in magnesium (brucite) octahedral sheets and 

silica tetrahedral sheets.  Substitution of Si4+ in the tetrahedral layer is commonly limited 

to only 15% by mainly Al3+ ions, while Al3+ in the octahedral sheets are generally 

replaced by various types of cations such as Mg2+, Fe2+, Zn2+, Ni2+, Li+, etc. (Grim, 

1968).  

Montmorillonite is the most commonly found mineral in the dioctahedral smectite 

subgroup, where substitution of one Mg2+ occurs in every sixth Al3+ in octahedral sheets, 

as shown in figure 2.10, and no substitution takes place in tetrahedral sheets.  This results 

in a net charge deficiency of about 0.66 – per unit cell as calculated in figure 2.10.  This 

net charge deficiency is balanced by exchangeable cations adsorbed between the unit 

layers and around their edges as shown in the crystalline structure in figure 2.9.  The 
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stoichiometric formula for a unit cell of Na-montmorillonite where the interlayer cation is 

sodium is written as [Si8(Al3.34Mg0.66)O20(OH)4].Na0.66.  Other commonly found 

exchangeable cations adsorbed within the interlayer spaces are Ca2+, K+, and Mg2+.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The trioctahedral smectites include the mineral species saponite, hectorite, and 

sauconite (Faure, 1998).  In saponite, the octahedral sheet is fully occupied by Mg2+ 

instead of Al3+, and the charge deficiency is due to the isomorphous substitution of Si4+ 

by Al3+ in its tetrahedral sheet.   The chemical formula of unit cell of saponite is given by 

Grim (1968) as [Mg6(Si7.34Al0.66)O20(OH)4].Na0.66. 

 

 

 

 

Figure  2.9  Diagrammatic Sketch of the Montmorillonite
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Figure 2.10  Charge Distribution in Montmorillonite (After Mitchell, 1993) 

 

[Vermiculite], like smectite, has 2:1 layer sheet structures with both the 

dioctahedral and trioctahedral forms of clay mineral.  The chemical formula of a typical 

vermiculite is given by McBride (1994) as [(Mg, Al, Fe3+)6(Si8-xAlx)O20(OH)4] (Mg.Ca)x 

where, x = 1 to 1.4.  The structure is unbalanced mainly due to the substitutions of Al3+ 

for Si4+ in tetrahedral sheet and causes a residual net charge deficiency of 1 to 1.4 per unit 

cell.  The higher charge deficiency in the tetrahedral sheet causes exchangeable cations in 

the interlayer (mainly Mg2+ with small amount of Ca2+) to electrostatically pull the layer 

together and thus reduce the layer thickness.  As reported by Grim (1968), many 

researchers have concluded that vermiculite has only two molecules sheets of water 

present in the interlayer, creating the characteristic spacing of 14Å, as shown in figure 

2.11(b).  In trioctahedral vermiculite, the charge deficiency in the tetrahedral sheet is 

partly compensated by an additional positive charge in the Al or Fe octahedral sheet. 

[Illite] is a nonexpandable dioctahedral clay under the mineral group called mica. 

Its basic unit is a layer composed of two inward-pointing silica tetragonal sheets with a 

central octahedral sheet, as shown in figure 2.11 (a).  In the illites, one-sixth of Si4+ ions 
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are replaced by Al3+ in octahedral sheets, which generates the net-unbalanced-charge 

deficiency of 1.3 per unit cell (Grim, 1968).  The resultant charge deficiency is 

compensated by the potassium ions in the interlayer spaces, which are fitted into the 

hexagonal holes formed by the silica sheets.  Therefore, illite has a low cation exchange 

capacity with very little or no water adsorption, which prevents it from swelling.  

[Chlorites] are the 2:1 layered clay minerals which can be trioctahedral or 

dioctahedral in nature.  In chlorites, the negative charge produced due to replacement of 

Si4+ by Al3+ is neutralized by the positive charge of brucite sheets generated due to the 

replacement of Mg2+ by Al3+ sandwiched in the interlayer position which bonds two 

tetrahedral sheets of two adjacent layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Cation Exchange Capacity 

 

Cations are attracted and held in between the sheets, on the surfaces, and on the 

edges of particles in order to maintain the electro-neutrality of particle charges.  The 

cations, which are exchangeable and readily available to be replaced by similar or other 

Figure 2.11  Schematic Diagram of the Structures of (a) Illite and (b) Vermiculite
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types of cations under different environmental and phase conditions, are quantified in 

terms of the cation exchange capacity of clay. 

Cation Exchange Capacity (CEC) is defined as the quantity of cations reversibly 

adsorbed by clay particles, expressed as milliequivalents (meq) per 100 grams of dry clay 

mineral.  As shown in the table 2.1, the cation exchange capacities of montmorillonite 

and vermiculite minerals are the highest (in the range of 80~150 meq/100g) among all 

clay minerals because of their high isomorphous substitution within the octahedral and 

tetrahedral layers, respectively, which results in a large ionic deficiency. 

 

Table 2.1  Some Clay Minerals Characteristics (after Mitchell, 1993) 

Mineral Interlayer bond Basal 
sapcing 

Specific 
surface 
(m2/gm) 

Cation exchange 
capacity (mEq/100 g) 

Kaolinite Hydrogen strong 7.2 Å 10-20 3-15 

Montmorillonite Oxygen-Oxygen 
Very weak 

9.6 Å 700-840 80-150 

Illite K ions: strong 10 Å 65-100 10-40 

Vermiculite Weak 10.5-14 Å 870 100-150 

Chlorite Strong 14 Å - 10-40 

 

When water comes in contact with clay particles, adsorption of positively charged 

ions with hydrated water molecules occurs at the interface between the solid phase and 

the aqueous phase.  According to Sposito (1989, 1981), adsorption of cations on clay 

particle surfaces and interlayers can take place by any of the three mechanisms as shown 

in figure 2.12. 

The siloxane surface, the plane of oxygen atoms on the surface of a 2:1 layer 

silicate, is characterized by a series of hexagonal cavities among its constituent oxygen 

atoms, which are formed by six corner-sharing tetrahedra.  The diameters of these 

cavities are found to be around 0.26 nm and are surrounded by six sets of electron orbits 

originating from the nearby oxygen atoms (Sposito, 1989, 1981).    
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The activity of a siloxane surface cavity depends on the charge distribution of the 

surrounding layer silicate structure.  A siloxane cavity can act as a mild electron donor if 

the near layer charge deficiency is low or zero, and can produce a complex with neutral 

dipolar molecules such as water.  The complexes formed in the cavity on a neutral 

interlayer silicate structure are very unstable and easily separable from their constituents.  

On the other hand, if negative charges are present in the octahedral layer, complexes 

formed in the cavity with interlayer cations and water molecules become strong enough 

to be immobile and can even get much stronger when formed near the surface of a 

negatively charged tetrahedral sheet where the layer charges are much closer to the cavity 

surface oxygen atoms. 

Two types of surface complexes are shown in figure 2.12, namely, the inner-

sphere complex, which is the result of the entrapment of ions or molecules within the 

surface cavity without the interference of water molecules, and the outer-sphere complex, 

which is produced by ions or molecules with at least one molecule of water attached to 

the surface functional group.  Outer-sphere complexes, which are formed due to 

electrostatic bonding, are generally weaker than inner-sphere complexes involving either 

ionic or covalent bonding mechanisms.   

Diffuse ion

Inner-sphere 
complex

Outer-sphere 
complex

Figure  2.12  The Three Mechanisms of Cation Adsorption on a Silicate 
Surface; e.g. Montmorillonite (after Sposito, 1989)
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Surface; e.g. Montmorillonite (after Sposito, 1989)
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Besides forming inner-sphere and outer-sphere complexes, the interlayer cations 

can also be adsorbed and neutralized by the negatively charged clay particles to form a 

diffuse-ion swarm, as shown in figure 2.12.  Such diffuse ions are dissociated from the 

surface functional groups and are free to move in the interparticle solution.   

Readily exchangeable ions in soil are those that can be easily replaced by other 

ions in an electrolyte solution passing through the soil.   Ions located within the diffuse-

ion swarm and the outer-sphere complex are the main readily exchangeable ions in the 

soil. 

 

 

2.2.3 Cation Replaceability 

 

Exchangeable cations are hydrated when mixed with water or liquid solutions and 

are readily displaced into solutions by cations of other types of higher replaceability 

(McBride 1994).  The capacity of cationic replaceability depends mainly on the valence, 

the relative abundance of different ion types in the solution and the silicate exchangeable 

layer, and the hydrated ion size.  As generally reported in the geochemistry and 

fundamental soil mineralogy literature (Mitchell, J. K, 1993; Schulze, D.G. 1989; Kelly, 

W.P. 1948; McBride, M.B. 1994), higher valence cations replace lower valence cations 

and smaller hydrated cations or larger ionic radius cations replace larger hydrated cations 

or smaller ionic radius cations of the same valence that are present in the exchangeable 

sites. 

Besides the above criteria for cation replaceability, the concentration of cations in 

the solution plays an important role in the replacement process.    In general, the 

replaceability series, also known as the “lytropic series,” is as follows: 

Li+ < Na+ < K+ < Rb+ < Cs+ < Mg2+ < Ca2+ < Ba2+ < Cu2+ < Al3+ < Fe3+ 

An exception to the above replaceability is possible when the cations of lower 

replacing power exist in very high concentrations in solution relative to high replacing 

power cations (Mitchell, 1993).  Table 2.2 and 2.3 show the radii of ions in dry and 

hydrated condition respectively. 



www.manaraa.com

24 

Table 2.2 Radii of Ions   Table 2.3  Hydrated Radius of Cations 

Ions Ionic radius (Å)   Ions Hydrated Ionic radius (Å) 

Li+ 0.68 – 0.82   Li+ 7.3 – 10.0 

Na+ 1.07 – 1.40   Na+ 5.6 – 7.9 

K+ 1.46 – 1.68   K+ 3.8 – 5.3 

Mg2+ 0.66 – 0.97   Mg2+ 10.8 

Ca2+ 0.83 – 0.95   Ca2+ 9.6 

Al3+ 0.47 – 0.61   

Fe3+ 0.57 – 0.63   

After Faure, G. 1998   

After Mitchell, 1993 

 

 

Ion exchange can also be viewed a chemical reaction, but exchange of ions occurs 

only due to broken bonds and long range electrostatic bonds of low energy (McBride, 

1994).  As such, ion exchange “reactions” are similar to inorganic chemical reactions and 

are typically written in the same form as given in equation (2.1), where Na+ ions from a 

layer of silicate clay surface are exchanged by Ca2+ in a CaCl2 solution. 

 

  CaCl2 (aq) + 2NaX(s) = 2NaCl (aq) + CaX2(s)           (2.1) 

where (aq) and (s) refer to the aqueous electrolyte solution and solid (exchanger) phases, 

respectively, and X represents the relatively insoluble aluminosilicate portion of the clay 

mineral.  The aluminosilicate can be assumed to act as a single anion with an equivalent 

charge of one.   

Thermodynamic theories that are applicable to inorganic chemical reactions are 

also applicable in the same way to those of cation exchange reactions (Sposito, 1981).  

The thermodynamic potential of a reaction is commonly described by the Gibbs-Duhem 

equation as expressed in equation (2.2).   The standard free energy change of the reaction 

(∆Go) defines the direction of the reaction as follows: 

∑∑ −=∆
tsreac

o

products

ooG
tan
µµ         (2.2) 
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where the superscript o refers to the conventional standard state which is at standard 

temperature (25oC) and standard atmospheric pressure (101.3 kPa).  The symbol µ refers 

to Gibbs free energy of each chemical species.  When ∆Go is negative, the forward 

reaction has excess energy when it occurs in the standard state. 

An example of soil thermodynamics theory has been cited by Sposito (1981) in 

terms of cation exchange reaction that occurs between an aqueous electrolytic solution of 

Ca2+ cations and Na+ saturated Camp Berteau montmorillonite.  The cation exchange 

reaction can be expressed as: 

 2NaX (s) + Ca2+ (aq) ↔ CaX2 (s) + 2Na+ (aq)      (2.3) 

where ( ) ( )[ ]97.585.29955.0
2

045.0
3

612.0358.494.11 OHOMgFeFeAlSiX ++≡  represents the aluminosilicate 

part of the montmorillonite normalized to the fractional charge deficiency [obtained by 

dividing each stoichiometric coefficient in the chemical formula of Camp Berteau 

montmorillonite by 0.335 eq/fw, the cation exchange capacity due to isomorphous 

substitutions].   

The standard free energy for the above cation exchange reaction, as given in 

equation (2.3), can be calculated from the individual reactants’ and products’ free energy 

(µo)  (Sposito, 1981; Faure 1998). 

 

  µo (Na-mont) = -5,346.1 kJ mol-1 

  µo (Ca-mont) = -5,352.3 kJ mol-1 

  µo (Na+ (aq)) = -261.9 kJ mol-1 

  µo (Ca2+ (aq)) = -553.5 kJ mol-1 

 

The standard free energy change for the reaction in equation (2.3) can be 

calculated for the Na- and Ca-montmorillonite by dividing the above corresponding 

values by 0.335 and multiplying by the valence of the exchangeable cation to place them 

on an equivalent basis as follows: 

 µo (NaX(s)) = (1/0.335) µo (Na-mont) = -15,958.5 kJ mol-1 

 µo (CaX2(s)) = (2/0.335) µo (Ca-mont) = -31,954.0 kJ mol-1 
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Therefore, the net change in free energy, ∆Go, is: 

    ∆Go  = {-31,954.0 + 2 (-261.9)} – {2 (-15,958.5) + (-553.5)} 

  =  - 7.3 kJ mol-1 

Since the free energy due to the cation exchange reaction according to equation 

(2.2) is negative, the forward reaction has an excess energy when it occurs in the standard 

state, which favors the direction as written.  Thus, the reaction and formation of Ca-

montmorillonite is thermodynamically favorable. 

The hydration energy of cations, defined as the amount of energy released when 

dry cationic substances are mixed or hydrated in water, has also been used in the 

Eisenman energy model of cation exchange, where the behavior of ions of different 

radius has been incorporated.  As described by McBride (1994), the electrostatic 

attraction energy, Eatt, between an adsorbed cation and the surface charge site is inversely 

proportional to the finite distance between the charge centers, as shown in figure 2.13, 

and is given by equation (2.4) as follows: 

    ( )As
att rr

eE
+

2

  α             (2.4) 

where e is the electronic charge unit.  This is the energy that is required to displace the 

water molecules present between the cations and the charged clay surface.   

The presence of water molecules on the clay surface is the result of the hydration 

of the clay surface and the exchangeable cations.  The total energy change, Etot, in excess 

of the attraction energy due to the movement of a monovalent ion, A+, from the solution 

to the surface is given by McBride (1994) as: 

   
⎭
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rr
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-           (2.5) 

where rA and EA are the radius and hydration energy of cation A, respectively.  The 

parameter rs is the effective radius of the charge surface, as shown in figure 2.13, and Es 

is the hydration energy of the surface.  For the cation exchange of ion B+ by ion A+ on the 

same clay surface, the overall change of energy would be: 
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          (2.6) 

where rB and EB are the radius and hydration energy of displaced ion B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the distance between the cation charge center and the location of negative 

structural charge in the clay (rs + rA or rs + rB) is large, as is the case for montmorillonite 

minerals where isomorphous substitution occurs in the octahedral layer, the electrostatic 

term of equation (2.6) is negligible.  Therefore, in the weak field condition, as depicted in 

figure 2.13, the total change of energy due to cation exchange would be equivalent to the 

Figure 2.13  Schematic Diagram of the Clay Surface-Exchange 
Cation Interaction in (a) Dry Condition, (b) Water on a 
“Weak Field”, (c) Water on a “Strong Field” 
Exchanger (after McBride, 1994)
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Figure 2.13  Schematic Diagram of the Clay Surface-Exchange 
Cation Interaction in (a) Dry Condition, (b) Water on a 
“Weak Field”, (c) Water on a “Strong Field” 
Exchanger (after McBride, 1994)
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difference in ionic hydration energies.  From Table 2.4, it is clear that the cations of 

higher hydration energies can be easily replaced by cations of lower hydration energies to 

come into contact with the surface and release energy during the process.  It can be noted 

that the Eisenman model is not considered to be a complete solution as it does not cover 

the changes of entropy (disorder) of various cations during exchanges. 

 

Table 2.4   Hydration Energy of Metal Cations (after McBride, 1994) 

Ion Hydration energy 

(kcal/mol) 

Ion Hydration energy 

(kcal/mol) 

Li+ 124 Mg2+ 460 

Na+ 97 Ca2+ 381 

K+ 77 Ba2+ 312 

Rb+ 71 Al3+ 1114 

Cs+ 63 Fe3+ 1046 

 

 

2.3 Permeant Characteristics 

 

Bentonite clay is being used in various applications of solution containment as 

well as a water barrier, in which a number of chemicals are dissolved.  These chemicals 

may be generated from many different industrial, commercial, and household application 

processes.  This section is mainly focused on sources of various chemical solutions that 

are blended in water which are required to be contained by clay liners and similar barrier 

materials.   

 

 

2.3.1 MSW Leachate  

 

Bentonite clay, as an active component of Geosynthetic Clay Liners (GCL) is 

being widely used in Municipal Solid Waste (MSW) landfill construction where the 
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proper functioning of the lining system is critical in terms of containment effectiveness of 

generated leachates.  Leachate is formed when water infiltrates the waste in the landfill 

cell.  The water within the landfill could be generated either from a combination of 

precipitation from rain and melted snow, or from the waste itself.  As the liquid moves 

through the landfill, many organic and inorganic compounds, such as heavy metals, are 

transported through the leachate. 
The amount of leachate produced is directly linked to the amount of precipitation 

around the landfill.  The amount of liquid waste in the landfill also affects the quantity of 

leachate produced.  Leachates are potentially hazardous wastes in landfill sites.  It is of 

the utmost importance that leachates are treated and contained within the landfill to 

prevent any contamination and mixing with fresh ground water.   

Leachate generated from municipal solid waste (MSW) and hazardous waste 

(HW) landfills is a mixture of organic and inorganic compounds, as well as dissolved and 

colloidal solids.  In order to design a collection and treatment system for leachate, it is 

important to have an understanding of the wastes placed in the landfill, as well as the 

physical, chemical, and biological processes that are occurring within the landfill. 

 The quality and chemical composition of leachates vary tremendously depending of a 

number of factors which include mainly: 

 

(a) Waste Composition 

The waste composition of MSW, especially household refuse (eg. food, 

garden wastes, animal residues, etc), contributes and determines the range 

and extent of biological activity within the landfill (Chen and Bowerman, 

1974).  Inorganic constituents in leachates are mainly derived from 

construction and demolition debris, industrial wastes, household furniture 

and electrical appliances, vehicle parts and tires, etc.    

 

(b)  Depth of Waste 

Higher depth of waste is found to contribute to higher concentrations of 

leachate at the base of the waste layer before entering into the lining 
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systems.  Deeper waste also requires a longer time to decompose as the 

water takes longer to reach larger depths.  As the water percolates through 

the deeper waste, it travels a long distance and reacts with larger quantities 

of waste material, which eventually yields a highly concentrated chemical 

solution at the base lining system (Qasim and Chiang, 1994). 

 

(c) Moisture Availability 

The quantity of water or the degree of saturation of waste materials within 

the landfill is the most important controlling factor of leachate quality.  

High quantities of moisture within loose or less compacted waste landfills 

increase the rate of flushing, which removes the majority of the 

contaminants during the early stages of filling, whereas in more 

compacted or low permeability landfills, high moisture causes an increase 

in the rate of anaerobic microbial activity which generates high strength of 

organic leachates (McBean et al., 1995; Chen and Bowerman, 1974).   

Low amounts of moisture take longer to fully react with all the available 

inorganic and organic agents of waste materials and therefore develop a 

slow stabilization rate of the landfill chemistry (McBean et al., 1995; 

Miller et al., 1994) 

 

(d) Oxygen Availability 

The amount of available oxygen controls the type of decomposition (i.e. 

anaerobic or aerobic) of organic components in landfill wastes.  Aerobic 

decomposition happens when the oxygen is available within the landfill, 

i.e., during the operation stage, at the top layer of the waste, and within 

loosely compacted waste fills where air voids are available.   Carbon 

dioxide, water, lightly concentrated organic compounds, and heat are 

generated during aerobic decomposition while highly concentrated organic 

acids, ammonia, hydrogen, carbon dioxide, methane, and water are 

produced during anaerobic degradation (McBean et al., 1995). 
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(e) Temperature 

Temperature within the landfill is responsible for bacterial growth, which 

controls organic and chemical reactions of the waste materials.  The 

solubility of many inorganic salts [e.g. NaCl, KCl, MgCl2, Ca3(PO4)2] 

increases with temperature.  However, the solubility of a number of other 

chemical compounds that are present in leachates, such as CaCO3 and 

CaSO4, deceases with increasing temperature as investigated by Lu et al. 

(1985). 

 

(f) Age of Landfill 

The age of a landfill directly controls the quality of leachate.  Leachates 

with maximum contaminants are found within 2-3 years of the final 

placement of wastes in the landfill, after which the amount of 

contaminants decline steadily over the next 10-15 years (McBean et al., 

1995; Lu et al., 1985).  Depletion of inorganic compounds is much faster 

than that of organic compounds which continue for a long period of time 

due to bacterial and other microorganism reactions (Lu et al., 1985).   

 

Table 2.5 shows the wide variation in leachate quality as investigated by various 

researchers (after Reinhart and Grosh, 1998).  A more detailed breakdown of organic and 

inorganic compounds of two MSW landfill leachates is given in Table 2.6, which was 

published in a report by the Ontario Ministry of Environment, Canada, in 1996. 

 

 

2.3.2 Ash Leachate 

 

Ash from Waste-To-Energy (WTE) facilities is being generated in abundance in 

the United States of America as the volume of solid waste increases with the increasing 

growth of population. The incinerated residues, composed of bottom ash and fly ash, are 

commonly disposed in landfills under Subtitle D ash monofills, provided that the 
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materials are non-hazardous according to USEPA's recommended Toxicity 

Characteristics Leaching Procedure (TCLP) test.  

The main factors, among many others, which affect the variation in chemical 

composition of ash are believed to be the source of burning materials (type of solid 

waste), methods of incineration, and additives used in the process of neutralizing 

hazardous materials (Muhammad and Ashmawy, 2003). 

 

    Table 2.5  Chemicals in Leachates as Found by Different Researchers (after Reinhart 
and Grosh, 1998) 

 
Parameter Ehrig, 1989 Qasim and 

Chiang, 1994

South Florida* 

Landfills, 1987 

Pohland and 

Harper, 1985 

BOD (ppm) 20 – 40,000 80 – 28,000 - 4 – 57,700 

COD (ppm) 500 – 60,000 400 – 40,000 530 – 3,000 31 – 71,700 

Iron (ppm) 3 – 2,100 0.6 – 325 1.8 – 22 4 – 2,200 

Ammonia (ppm) 30 – 3,000 56 – 482 9.4 – 1340 2 – 1,030 

Chloride (ppm) 100 – 5,000 70 – 1330 112 – 2360 30 – 5,000 

Zinc (ppm) 0.03 – 120 0.1 – 30 - 0.06 – 220 

P (ppm) 0.1 – 30 8 – 35 1.5 – 130 0.2 – 120 

pH 4.5 – 9 5.2 – 6.4 6.1 – 7.5 4.7 – 8.8 

Lead (ppm) 0.008 – 1.020 0.5 – 1.0 BDL – 0.105 0.001 – 1.44 

Cadmium (ppm) <0.05 – 0.140 <0.05 BDL – 0.005 70 – 3,900 

BDL – below detection limit 

* - South Florida Water Management District, 1987. 

 

Chemical analysis of various types of fly ash conducted by many researchers 

revealed that the major four minerals present in the fly ash are silica (SiO2), alumina 

(Al2O3), calcium oxide (CaO), and iron oxide (Fe2O3). Other minor minerals, which are 

normally less than 5% in total weight, are magnesium oxide (MgO), sodium oxide 

(Na2O), titanium oxide (TiO2), potassium oxide (K2O), phosphorus oxide (P2O3), sulfur 

trioxide (SO3), and trace metals oxide (Edil et al., 1992; Joshi et al., 1994; 
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Wentz et al.,1988; Porbaha et al., 2000; Hettiaratchi et al., 1999).  The four major 

minerals found in combined MSW ash are the same as those in fly ash but the amount of 

calcium oxide (CaO) is predominant compared to other minerals because of the presence 

of free-lime used in the process of incineration (Keith and Goodwin, 1990). 

 

   Table 2.6 Chemical Composition of Two MSW Landfill Leachates  

Parameter Muskoka Guelph 

Benzene (ppb) 18 19 

Toluene (ppm) 263 201 

Ethylbenzene (ppm) 35 80 

m + p-xylene (ppm) 66 148 

O-xylene (ppm) 37 85 

NH4+ (ppm) 103,000 865,000 

K (ppm) 114 1301 

Ca (ppm) 203 883 

Mg (ppm) 29 525 

Fe (ppm) 38 1 

B (ppm) 1 8 

Cl- (ppm) 98 2464 

EC (mS/cm) 1.4 9.9 

pH 5.4 7.0 

    

The electrical conductivity (EC) of the effluent solution is found to be reduced to 

around 1000 microsiemens/cm from their initial high values of 100,000 microsiemens/cm 

within less than 5 pore volumes of flow though the specimens of compacted ash materials 

Therefore it is concluded that the majority of the salts (chlorides and sulfides) are 

“flushed” out of the sample within a maximum of 5 pore volumes (Muhammad and 

Ashmawy, 2003). 

The research conducted by Muhammad and Ashmawy (2003) on ash leachates 

also reveals the pattern of attenuation of sodium, calcium and potassium in the effluent 
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permeant with pore volumes of permeation.   It was observed that the initial high calcium 

concentration of 15,000 to 35,000 ppm was reduced to below 3,000 ppm within 5 pore 

volumes of permeation, with further reduction to less than 500 ppm after around 12 pore 

volumes.  The same trend was also observed for sodium and potassium ion 

concentrations.  The concentration of sodium ions was reduced from an initial high 

concentration of around 10,000 -12,000 ppm to less than 500 ppm within 8 pore volumes.  

Similarly, potassium ions decreased in concentration from around 6,000-9,000 ppm to 

less than 500 ppm within 5 pore volumes of permeation. The trend of attenuation of all 

the main elements replicates the attenuation of EC values of effluent.  

 

 

2.3.3 Other Sources of Inorganic Leachates  

 

Bentonite waterproofing has proven reliable for a wide range of applications, 

including underslab, back-filled walls, plaza deck, and property line construction such as 

soldier piles and lagging.  Underslabs typically are installed directly on a properly 

compacted substrate, eliminating the requirement for a mud slab.   The swelling 

properties of bentonite are effective in sealing small concrete cracks caused by 

settlement, seismic action or other similar conditions.   For installations where 

groundwater is contaminated or has a high level of salt concentration, contaminant-

resistant bentonite characteristics are required.   

Bentonite waterproofing systems are employed on fresh concrete as soon as the 

concrete forms are removed in order to preserve concrete water / cement ratio and to 

prevent any external ingress into the concrete.   Limitations of bentonite waterproofing 

include proper confinement for maximum performance.   Bentonite waterproofing should 

not be installed when properly compacted back-fill or concrete cover is absent, as proper 

confinement is required. 

Bentonite can be used to form a cut-off wall by injection or pressure grouting 

and/or slurry trenching.  It is also being used in repairing cracks of earth dams or 
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embankments used in storing industrial byproducts containing organic or inorganic 

contaminants, as shown in figure 2.14.   

Bentonite is also used in pipe connections such as at the joints between concrete 

or synthetic pipes and manholes in sewer construction, where a large amount of 

contaminated slug flows constantly, as shown in figure 2.15.  Other uses include earthen 

ponds and lagoons, where bentonite is exposed to the contained water, which affects its 

performance if highly concentrated dissolved salts are present.  The swelling property 

when hydrated allows bentonite to fill voids or unexpected opening in sandy soils, where 

it acts as a “self-healing” material. 

Drilling fluids have been used for years to stabilize boreholes during drilling 

operations.  In the 1950’s, civil and geotechnical engineers discovered that deep, narrow 

trenches excavated in granular soils could also be stabilized using the same technology to 

prevent collapse of the sidewalls. The excavated materials could then be mixed with 

bentonite slurry and backfilled, providing an economical barrier to lateral flow of water 

and many fluid pollutants since fluid loss of the pure bentonite plays can affect long term 

performance.   The amount of fluid loss is also affected by the quality of the water that is 

expected to be in contact with the bentonite. 

 

 

 

 

 

 

 

  

 

Figure 2.14  Application of Bentonite in Embankment or Earthen Dam 

 

In all of the above applications, bentonite is expected to encounter water-borne 

contaminants or highly concentrated organic or inorganic salt solutions where Ca, Mg, K, 

Pervious 
embankment

Storage Level

Pervious layer

Impervious layer

Grout 
holes

Pervious 
embankment

Storage Level

Pervious layer

Impervious layer

Grout 
holes



www.manaraa.com

36 

and Na dissolved cations are present.  The existence of these cations in salt solutions is 

responsible for the deteriorating performance of the bentonite component of the structure. 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.15  Application of Bentonite in Manhole-Pipe Connection 

 

 

2.4  Water-Bentonite Interaction 

 

Adsorbed cations needed to neutralize the negatively charged particles are tightly 

held on the clay surface in the dry phase of the clay.  Dried clays adsorb water from the 

atmosphere at low relative humidities.  Clays in the smectite group swell when they 

adsorb water, and need temperatures above 100oC to remove most of the water within the 

pore spaces.  Much higher temperatures in the range of 500 ~ 1000oC are needed to 

remove all the water within clay interlayer spaces, which is held tightly on the clay 

particles due to the negative charge on the surface. 

In the clay chemistry literature, clays are considered to be lyophobic (liquid 

hating) or hydrophobic (water hating) colloids rather than lyophilic or hydrophilic 

colloids, even though water is adsorbed by the clay particles.  Hydrophilic colloids are 
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those that adsorb water so as to form a colloidal solution instantaneously (van Olphen, 

1977).  Clays are considered hydrophobic because: 

(a) it has a two-phase system with a large interfacial surface area, 

(b) clay-water behavior is dominated by clay surface forces, and 

(c) it can flocculate in the presence of small amount of salts. 

 

 

2.4.1 Mechanisms of Interaction 

 

The following mechanisms for clay-water interaction are possible: 

 

(a)   Hydrogen Bonding 

Because the clay mineral’s exposed surfaces are either composed of oxygens or 

hydroxyls ions, hydrogen bonding develops with oxygen attracting the positive corner 

(H+) of water molecules and hydroxyl attracting the negative portion (O-), as shown in 

figure 2.16(a).  This bond will redistribute and reorient the charges in normal water, and 

the bonded water molecules will progressively alter the direction of adjacent molecules.  

The bonding will become less rigid with distance from the surface of the clay due to the 

surface force fields as well as the increase in the force fields of the water structure 

(Mitchell 1993). 

(b)   Exchangeable Cations 

Exchangeable cations that are attracted on the negatively charged surfaces get 

hydrated when mixed with water and are attracted to the clay surface in the form of 

hydrated molecules, as shown in figure 2.16(b).  Positively charged cations are 

surrounded by the negative corner of the water molecules. 

(c)   Attraction by Osmosis 

The concentration of hydrated cations near to the charged surface is higher due to 

the electrostatic attraction.  Due to this electrostatic attraction, cations are prevented to 

diffuse away from the surface so the concentration of water molecules is lower at near the 

surface of clay particles.  This variation in water concentration causes water molecules to 
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diffuse toward the vicinity of the charged surface due to osmotic pressure, as shown in 

figure 2.16(c) (Mitchell, 1993). 
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Figure 2.16  Possible Meachanisms of Water Adsorption by Clay 
Surfaces (a) Hydrogen bonding, (b) Ion hydration, (c) 
Attraction by Osmosis, and (d) Dipole Attraction. (after 
Mitchell, 1993)
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(d)   Charged Surface – Dipole Attraction 

As the water is a dipole molecule, even though it is electrically neutral, it is 

electrostatically attracted to the charged clay surface due to Van der Waals attraction 

force (Mitchell 1993, Holtz 1981).  Water molecules dipoles are directed to the negative 

charged surfaces, with the degree of orientation decreasing gradually with increasing 

distance away from the surface.  

 

 

2.4.2. Diffuse Double Layer 

 

Tightly held interlayer cations within the clay particles, due to electrostatic 

attraction of the negatively charged surfaces, pull water molecules because of their 

hydration energy upon wetting.  Highly concentrated cations along the charged surfaces 

try to diffuse away from the surfaces in order to equalize the concentration throughout the 

clay-water solution.  The escaping tendency of cations from the surface and the opposing 

electrostatic attraction lead to a specific ion distribution along the clay particles in the 

clay-water suspension.  The negative charge of the clay surface and the distribution of 

cations in the soil solution are known as “Diffuse Double Layer” or DDL (Mitchell, 

1993; Shackelford, 1994). 

 

 

2.4.2.1    Theory and Mathematical Models of DDL 

 

The concept of diffuse double layer has been developed from the basics of the 

electrical double layer, which describes the variation of electric potential near a charged 

surface, and plays an important role in the behavior of colloids and other surfaces which 

are in contact with electrolyte solutions. The earliest concepts of the double layer were 

proposed and developed by Helmholtz (1853-1879) where the double layer refers to the 

counterions (cations) and co-ions (anions) in a rigid layer adjacent to the clay charged 

interfaces (Endo et al. 2001).  Figure 2.17 illustrates the Helmholtz model which is 
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analogous to the parallel plate-capacitor in which the negatively charged surface would 

form one plate and rigidly linked opposite charged cations to the surface would form 

another plate (Endo et al. 2001).  In this model no interactions occur further away from 

the first layer of adsorbed ions, and the electric potential drops sharply from its maximum 

value at the charged surface to an almost negligible value at the center of the first fixed 

layer of cations adjacent to the surface, as shown in figure 2.18.  Two principal 

shortcomings were discovered in this model during subsequent research by Gouy and 

Chapman in 1913 (Mitchell, 1993; Endo et al., 2001; Wikopedia, 2004; Van Olphen, 

1977) as follows: 

(a) It neglects interactions of cations and anions occurring further away from 

the charged surfaces and 

(b) The extent and thickness of diffuse double layer takes into account no 

dependence on electrolyte concentration. 

 

Gouy and Chapman (1910-1913) made a significant improvement by introducing 

a diffuse double layer model, in which the potential decreases exponentially away from 

the surface due to adsorbed counter-ions (cations) from the solution away from the 

charged surface.  Thus, the double layer would not be compact as in Helmholtz’s model, 

but of variable thickness as the ions are free to move away in the bulk electrolyte solution 

as shown in figure 2.19 (after Mitchell 1993).   
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The electrical potential of the electrolyte solution decreases exponentially from 

the face of the charged surface, which gradually extends into the bulk solution, and the 

concentration of ions have been calculated to be very high at the surface due to the 

assumption of point ionic charges (van Olphen 1977, Mitchell 1993).  The hydrated ionic 

size is not considered in this model. 

Stern, in 1924, developed a model incorporating Helmholtz model and Gouy-

Chapman model, commonly known as Stern-Gouy-Chapman model, which is widely 

acceptable at present (figure 2.19).  This model consists of a compact layer of cations of 

finite radius at the close vicinity of the negatively charged surface known as the “Stern 

layer”, similar to the  Helmholtz model, and a diffuse layer of cations and anions 

extending into the bulk solution similar to the Gouy-Chapman model (van Olphen, 1977; 

Mitchell 1993).  The effect of the stern layer on the surface electrical potential and 

cationic concentration is shown in figure 2.19 (Mitchell 1993).  The thickness of the 

Stern layer increases with cationic size, and its presence would limit the predicted cation 

concentration at the surface, as shown in figure 2.19.   

Mathematical representations of the diffuse double layer phenomenon were provided 

using the following assumptions (Mitchell 1993): 

 

(a) Ions are point charges with no interaction among opposite charges within the 

interlayer and bulk pore spaces, 

(b) The charge on the particle surface due to isomorphous substitution is uniformly 

distributed, 

(c) The dimensions of the surface on which the charge deficiency is uniformly 

distributed are much larger than the diffuse double layer, and 

(d) The permittivity of the medium present in between the surfaces is constant 

regardless of the position. 

 

From electrostatics, Poisson’s equation gives the charge balance in an electric 

field, and the general expression for a homogeneous dielectrical medium in a one-

dimensional situation is: 
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Ddx
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              (2.7) 

where, ψ is the electrical potential in front of the charged clay surface, ρch is the charge 

volumetric density (C m-3), D is the relative permittivity of the medium, and εo is the 

dielectric constant of the void (C V-1 m-1).   
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On the other hand, the Boltzmann equation represents the distribution of ions 

within an electrical field: 

   
( )

kT
ee

ioi

ioi ψνψν

ηη
−

= exp             (2.8) 

where, k is Boltzmann’s constant, T the absolute temperature, ηi = ionic concentration of 

the species i, e = unit electronic charge (16 x 10-20 Coulomb), and ψo = electrical 

potential at concentration ηio.  As the potential at great distance from the interface is 

equal to zero, the term νieψo can be set to zero.   

 

The volume charge can be expressed as: 

   ∑= iich e ηνρ               (2.9) 

Using equation (2.9), Boltzmann equation (2.8) can be written as: 
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Substituting into Poisson’s equation leads to the general expression for the 

Poisson-Boltzmann equation in a one-dimensional field: 
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          (2.11) 

For a solution of single cation and anion species of equal valence, i.e. i = 2, ν+ = 

ν- = ν, ηo
+ = ηo

- = η, and sinh p = (ep – e-p)/2, equation 2.11 can be rewritten as: 
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 It is convenient to rewrite the above equation (2.12) in terms of the following 

dimensionless quantities: 
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Putting the above relationships of equation (2.13) in equation (2.12), we get: 

    y
d

yd sinh2

2

=
ξ

             (2.15) 

K, dimensionally a length, is called the Debye-Huckel parameter.  Using the 

boundary conditions for the first integration, ξ = ∞,  y = 0, and dy/dξ = 0, the following 

can be obtained: 
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       (2.16) 

This condition holds for a large pore, as it assumes that the double layers of two 

platelets, one in front of the other, do not overlap. 

The boundary condition for the second integration, ξ = 0, y = z (i.e. ψ = ψo), 

yields:  

   ( )
( ) ξ
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zz
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y        (2.17) 

Equation (2.17) describes the decay of the potential as a function of the distance 

from the surface at a given surface potential (i.e., z) and at a given electrolyte 

concentration (i.e., K2). 

If the surface potential is small (ψ << 25 mV), then νeψ/kT << 1 (i.e., z << 1) and 

the relation e-x ≈ 1-x is often adopted in order to expand the exponential equation (2.11) 

as follows: 
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       (2.18) 

Because of the electrical neutrality of the bulk solution, the first term in the 

parentheses (∑νiηio) has to be equal to zero from the charge equation (2.9), and equation 

(2.18) then becomes: 

   ψψ 2
2

2

Κ=
dx
d               (2.19) 

The solution of the above equation (2.19) can be written as: 

   x
o

Κ−= expψψ               (2.20) 
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In this case, the center of gravity of the counter ions (cations) atmosphere 

coincides with the plane Kx = 1 or x = 1/K.  Hence 1/K is often called the double layer 

thickness; it is also equal to the “characteristics length” in the Debye-Huckel theory of 

strong electrolytes. 

 

 

2.4.2.2   Factors Affecting DDL 

 

The thickness of the diffuse double layer (DDL), 1/K, can be rearranged from 

equation 2.14 as follows:   
2/1

222
1
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o           (2.21) 

 

The variable factors in equation (2.21), which affect the DDL thickness, can be 

summarized as follows: 

(a) Electrolyte Concentration (ηo) 

By keeping all other factors constant, an increase in electrolyte concentration 

will decrease DDL exponentially.  A one hundred fold increase in 

concentration will cause a 10 fold decrease in DDL distance as calculated 

from equation (2.21), an example of which is shown in figure 2.20 (Mitchell, 

1993). 

(b) Electrolyte Cation Valance (ν) 

It is found from equation (2.21) that the thickness of DDL is inversely 

proportional to the valence of the electrolyte solution.  An increase in valence 

will suppress the midplane concentrations and potential between interacting 

plates, which leads to a decrease in interplate repulsion as given in figure 2.20 

(after Mitchell, 1993) 
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(c) Effects of Dielectric Constant (D) 

The DDL thickness is directly proportional to the square root of the dielectric 

constant of the concentrated electrolyte solution.  The value of D also affects 

the electrical potential (ψo) as per the hyperbolic expression given in the 

following equation:  

( ) σεη
ψν 2/18

2
sinh −=⎟

⎠
⎞

⎜
⎝
⎛ DkT

kT
e

oo
o        (2.22) 

It is found from equation (2.22) that for a constant value of surface charge 

density, the electrical potential increases as the dielectric constant decreases.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 Effect of Concentration on Ion Distributions with Distance (after 

Mitchell, 1993) 

Distance from surface (Å )

C
on

ce
nt

ra
tio

ns
 (i

on
s/

cm
3 )

Anions

Distance from surface (Å )

C
on

ce
nt

ra
tio

ns
 (i

on
s/

cm
3 )

Anions



www.manaraa.com

47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 Effect of Cation Valence on Double Layer (after Mitchell, 1993) 
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CHAPTER THREE 

 
 
 

BENTONITE CHARACTERIZATION 

 

In this chapter the index and physicochemical properties of bentonite that has 

been used in this study are highlighted.  Geotechnical tests such as Atterberg limits, 

particle/grain size distribution, specific gravity, and swell index have been conducted 

using ASTM standards.  Modifications have been made to the conventional standards to 

suit the type of bentonite clay used in this study after thorough investigations of various 

studies published in the literature. 

 

 

3.1 Source of Bentonite 

 

Extra High Yield Bentonite powder manufactured by Wyo-Ben, Inc., has been 

used in this study.  Widely known as “Wyoming Bentonite” (sodium montmorillonite), 

this bentonite is being commercially used in the construction industry for mining 

exploration, water wells, and directional drilling operations.  When one 50-lb bag 

bentonite powder is mixed with 300 gallons of water, it provides a funnel viscosity of 30-

35 seconds.  

 
 
 
3.1.1 Mineralogy Through XRD 

 

X-Ray diffraction (XRD) has been used for many years to determine the 

mineralogy based on basal spacing of the clay minerals (Suzuki et al., 2001; Hwang and 
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Dixon, 2000; Chmielova et al., 2000;  Kozaki et al., 2001; Song and Sandi, 2001; 

Mayayo et al., 2000; Cases et al., 1997). 

X-rays are electromagnetic radiations of wavelength of about 1 Å, which is 

approximately the same size as an atom. They occur in that portion of the 

electromagnetic spectrum between gamma-rays and ultraviolet. X-ray diffraction has 

been in use in two main areas: characterization of crystalline materials and the 

determination of their structure.  Each crystalline solid has its unique characteristic X-ray 

powder pattern, which may be used as a "fingerprint" for its identification.  Once the 

material has been identified, X-ray crystallography may be used to determine its 

structure, i.e., atomic packing in the crystalline state and interatomic distances and 

angles. 

X-ray diffraction is a routine method in mineralogy, particularly for fine-grained 

material study.  It is one of the primary techniques used by mineralogists and solid state 

chemists to examine the physicochemical composition of unknown solids.   XRD can 

provide additional information beyond basic identification.   If the sample is a mixture, 

XRD data can be analyzed to determine the proportion of the different minerals present.  

Other information obtained can include the degree of crystallinity of the mineral(s) 

present, possible deviations of the minerals from their ideal compositions (presence of 

element substitutions and solid solutions), structural state of the minerals, and degree of 

hydration for minerals that contain water in their structure.  Some mineralogical samples 

analyzed by XRD are too fine-grained to be identified by optical light microscopy.  XRD 

does not, however, provide the quantitative compositional data obtained by electron 

microprobes or textural and qualitative compositional data obtained by scanning electron 

microscope. 

The XRD technique requires placing a powdered sample of the material in a 

holder, then illuminating it with X-rays of a fixed wave-length.  The intensity of the 

reflected radiation is then recorded using a goniometer. This data is analyzed for the 

diffraction angle to calculate the inter-atomic spacing (d value in Angstroms - 10-8 cm).   
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The three-dimensional structure of non-amorphous materials, such as minerals, is 

defined by regular, repeating planes of atoms that form a crystal lattice.  When a focused 

X-ray beam interacts with these planes of atoms, part of the beam is transmitted, part is 

absorbed by the sample, part is refracted and scattered, and part is diffracted. Diffraction 

of an X-ray beam by a crystalline solid is analogous to diffraction of light by droplets of 

water, producing the familiar rainbow.  X-rays are diffracted by each mineral differently, 

depending on atom make up and arrangement in the crystal lattice.  

In X-ray powder diffractometry, X-rays are generated within a sealed tube under 

vacuum. A current is applied that heats a filament within the tube; the higher the current 

the greater the number of electrons emitted from the filament. This generation of 

electrons is analogous to the production of electrons in a television picture tube. A high 

voltage, typically 15-60 kilovolts, is applied within the tube. This high voltage 

accelerates the electrons, which then hit a target, commonly made of copper. When these 

electrons hit the target, X-rays are produced.  The wavelength of these X-rays is 

characteristic of that target.  These X-rays are collimated and directed onto the sample, 

which is a fine powder of particle size of less than 10 microns. A detector detects the X-

ray signal; the signal is then processed either by a microprocessor or electronically, 

converting the signal to a count rate.  Changing the angle between the X-ray source, the 

sample, and the detector at a controlled rate between preset limits, an X-ray scan is 

obtained.  Figure 3.1 shows how X-ray waves reveal the atomic structure of crystals.  

 

 

 

 

 

Figure 3.1  Basics of X-ray Diffraction Technique 
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When an X-ray beam hits a sample and is diffracted, it measures the distances 

between the planes of the atoms that constitute the sample by applying Bragg's Law as 

given in the equation (3.1).  

θλ sin2dn =            (3.1) 

where the integer n is the order of the diffracted beam,  λ is the wavelength of the 

incident X-ray beam, d is the distance between adjacent planes of atoms (the d-spacing), 

and  θ is the angle of incidence of the X-ray beam.  By knowing λ and measuring θ, the 

d-spacing can be calculated.   The characteristic set of d-spacings generated in a typical 

X-ray scan provides a unique “fingerprint” of the mineral or minerals present in the 

sample.  When properly interpreted, by comparison with standard reference patterns and 

measurements, this “fingerprint” allows for identification of the material.   A typical 

spectrometer with XRD fundamentals is shown in figure 3.2 where the value of θ or 2θ 

determines the composition of minerals in the specimen.  

 

 

 

 

 

 

Figure 3.2  XRD Spectrometer Fundamentals 
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within the holder of XRD device.  Copper radiation (Kα = 1.5405 Å) in the 5 < 2θ < 65 

range was applied to generate the XRD signature of the material.   

 

3.1.2 Mineral Compositions 

Composition of minerals of “Wyo-ben” bentonite from the XRD diffractograms is 

shown in figure 3.3.  Most of the peaks match with those for montmorillonite and quartz 

minerals.  
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Figure 3.3 XRD Test Results for Bentonite  
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3.1.3 Chemical Composition 
 

Chemical properties of the bentonite powder were investigated in both dry and 

colloidal states.  Analysis of the chemical composition of bentonite has been carried out 

on dry specimens using Energy Dispersive Spectroscopy (EDS).  Electrical conductivity 

and pH measurements were conducted on a bentonite-water suspension as described in 

the following sections. 

 

 

3.1.3.1 EDS Analysis 

 

Earlier research on chemical composition of various types of bentonite revealed 

that the major four minerals present in the sodium montmorillonite are silica (SiO2), 

alumina (Al2O3), sodium oxide (Na2O), calcium oxide (CaO), and iron oxide (Fe2O3).  

Other minor minerals, which normally constitute less than 1% in total weight, are 

magnesium oxide (MgO), titanium oxide (TiO2), potassium oxide (K2O), manganese 

oxide (MnO), and trace metals oxide (Kaufhold et al., 2002;  Nakashima, 2003; Singh et 

al. 2002; Guillaume et al., 2003; Christidis, 2001).   The four major chemical compounds 

found in the bentonite are similar to those found in other clay minerals, except for the 

amount of calcium oxide (CaO) and the relative amounts of other constitutes (Ramirez, 

2002; Guillaume et al., 2003; Bradbury and Baeyens, 2003; Nakashima, 2003; Benito et 

al., 1998).   

In this research, chemical analysis of the as-received bentonite was conducted by 

Energy Dispersive Spectroscopy (EDS).  The as-received samples were oven dried and a 

20-gram portion was used for EDS testing.   

The EDS technique uses X-rays resulting from interactions between applied fast 

beam electrons and the specimen atoms. X-rays, which are electromagnetic radiations of 

extremely short wavelength, are emitted when a specimen is bombarded with fast 

electrons.  The X-ray energy and wavelength are related to the specimen’s elemental 

composition. When the specimen is bombarded by the electron beam of a Scanning 
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Electron Microscope (SEM), electrons are ejected from the innermost shell of the atoms 

comprising the specimen. An electron from an outer atomic shell drops into the vacancy 

in the inner shell in order to return the atom to its normal (balanced) state. This drop 

results in the loss of energy due to the difference in energy between the vacant shell and 

the shell contributing the electron. The energy is given up in the form of electromagnetic 

radiation or X-rays. Since energy levels are different for different elements, characteristic 

rays are generated accordingly.  

Energy Dispersive X-ray microanalysis uses detection equipment to measure the 

energy values of the characteristic X-rays generated within the electron microscope. An 

X-ray micro-analyzer system converts X-ray energy into an electronic count by using 

semiconductor materials that can detect the X-rays. The accumulation of these energy 

counts creates a spectrum, which is then plotted against relative counts of the detected X- 

rays and evaluated for qualitative and quantitative determination of the elements present 

in the specimen.  The energy peaks are essentially fingerprints of the specific elements in 

a specimen.  Figure 3.4 illustrates the basic layout of an EDS system. Details of EDS 

have been described by Russ (1984) and Goldstein et al. (1981). 

EDS characterization of bentonite was conducted using a Hitachi S-800 

spectrometer located at the Metrology Laboratory of the Nanomaterials and 

Nanomanufacturing Research Center (NNRC) at the University of South Florida.  This 

spectrometer is also fitted with a Scanning Electron Microscope (SEM) as shown in 

figure 3.5.  Bentonite powder was scanned using SEM to find its aggregated particle size, 

which is also shown in figure 3.6. 

Energy peaks for various elements for a bentonite specimen are shown in figure 

3.7, which shows the major elements found using EDS.   The main chemical elements in 

the composition of bentonite are found to be oxygen, chlorine, silicon, aluminum, 

calcium, sodium, iron, sulfur, magnesium and some other trace metals.  The chemical 

compounds that constitute the bentonite powder used in this research are SiO2, Al2O3, 

Fe2O3, Na2O, MgO, CaO, TiO2, K2O, MnO, and some other trace metal oxides.   Table 

3.1 shows the quantitative chemical composition of all the elements and trace metals 

derived from EDS. 
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Figure 3.4  Schematic Diagram of EDS System 

 

 

 
 

Figure 3.5  Spectrometer Fitted with Scanning Electron Microscope (HITACHI S-800) 
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Figure 3.6  Dry Bentonite Powder Under SEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7  Energy Peaks for Bentonite Chemical Elements Using EDS 
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Table 3.1  Chemical Composition of Bentonite 

Major Chemical compounds Trace metals 

SiO2 66.5% Arsenic 0.1 ppm 
Al2O3 16.9% Barium < 1.0 ppm 
Fe2O3 7.4% Cadmium <0.01 ppm 
Na2O 2.3% Chromium < 0.05 ppm 
MgO 2.3% Lead < 0.1 ppm 
CaO 2.1% Mercury < 0.02 ppm 
TiO2 0.2% Selenium < 0.02 ppm 
K2O 0.4% Silver < 0.05 ppm 

 

It can be seen from the table that the main exchangeable cations in the double 

layer space would be sodium, calcium, magnesium and a small amount of potassium.  

 

 

3.1.4 Electrical Conductivity and pH 

 

Electrical conductivity and pH of a bentonite-water suspension were investigated 

at various colloidal concentrations.  The electrical conductivity was measured by using an 

Accumet (model AB30) 4-cell conductivity meter (shown in figure 3.8) and two epoxy 

body electrodes of cell constant 1.0 cm-1 and 10.0 cm-1.    These electrodes are capable of 

measuring a wide range of electrical conductivity from 10 to 200,000 microsiemens/cm.   

Whenever a change of electrodes was required to obtain a measurement within a 

particular range, it was necessary to recalibrate it using its own standard solution. 

 Bentonite samples of various amounts were soaked into deionized water for at least 

48 hours in order to adsorb as much water as possible with all the pores and interlayer 

spacing.  Quantities of 5g, 10g, 15g, 20g, 30g, and 50g air-dry bentonite powder were 

mixed with 1 liter of deionized water to obtain 0.5%, 1%, 1.5%, 2%, 3%, and 5% of 

suspension respectively. 

 



www.manaraa.com

58 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8  Accumet (Model AB30) 4-cell Conductivity Meter 

 

 After soaking for at least 48 hours, the bentonite suspension in deionized water was 

stirred for at least 15 minutes using a mechanical stirrer/mixer before being poured into a 

1 liter capacity glass beaker for self flocculation.  After flocculation and subsequent 

settlement, supernatant water samples were collected for electrical conductivity and pH 

measurement. 

Immediately following the sample collection, the pH of the non-acidified original 

sample was measured using an Accumet portable (model AP63) pH meter and 

polymerbody combination pH/ATC Ag/AgCl electrode as shown in figure 3.9.   The pH 

meter was calibrated at three levels, using three standard color-coded buffer solutions of 

pH 4.00, 7.00 and 10.00. The variations of electrical conductivity and pH with respect to 

the percentage of suspension of bentonite in deionized water are shown in figure 3.10.   

The electrical conductivity of bentonite increases with increasing amount of 

bentonite suspension in a second-order polynomial manner, while the pH decreases with 

increasing bentonite suspension in a power equation as shown in figure 3.10.  At higher 

suspension concentrations, bentonite aggregate particles are unable to deflocculate and 

disperse in water, thus contributing less towards the total electrical conductivity of the 

water solution. 
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Figure 3.9  Accumet Portable (Model AP63) pH Meter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10  Electrical Conductivity and pH of Bentonite Suspension 
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3.1.5 Loss of Ignition 

 

The amount of organic content in the bentonite powder is indicated by the value 

of loss of Ignition (LOI), which is traditionally expressed as total percent of the material.  

LOI of fine grained powdered bentonite is determined by burning at high temperatures in 

a controlled temperature oven.  Loss of ignition has been reported for various types of 

bentonite within a range of 0.2% to 5% (Keijer and Loch, 2001; Keijer et al., 1999; 

Lehikoinen et al., 1996).   

Bentonite clay specimens in this study were burned at two different temperatures 

(550oC and 1000oC) in two separate specimens, 4.0 g and 2.0 g, respectively.  After 

burning at 550oC temperature, the LOI was found to be 3% while at 1000oC the value 

rose to 5.6%.  According to the technical information provided by the manufacturer of 

this bentonite (Wyo-Ben, Inc), LOI has been found to be 4.4%, which falls within the 

range obtained in this study.  LOI cannot be measured at very high temperatures because 

of the evaporation of the volatile components of the bentonite material.   Bentonite with 

higher LOI may or may not interfere with the chemical solutions used during long term 

diffusion as well as hydraulic conductivity, but would produce organic compounds under 

long and sustained chemical and hydraulic flow as observed later in some of our 

experiments. 

 

 

3.2  Grain Size Distribution 

 

  Particle size distribution of bentonite cannot be obtained using either conventional 

dry sieve or hydrometer testing because of the aggregated nature of the particles.  

However, both sieve analysis and hydrometer test were carried out in order to investigate 

the amount of coarse fraction and fine-grained characteristics with various types of 

inorganic chemical solutions, and to gain a general idea about the relative distribution of 

clay aggregated particles. 
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3.2.1 Hydrometer Test 

 

Bentonite particles, because of their high surface charges, repel each other and 

exist as individual particles when mixed with bulk water. The size of the particle is in the 

range of 0.01 to 1 µm and can be considered as colloidal.  Because of their high colloidal 

nature, bentonite particle sizes cannot be measured by hydrometer analysis.  Nonetheless, 

a review of the literature show that bentonite particle size distributions were carried out 

by Kozaki et al., (2001), Eriksen et al., (1999), Zhang et al., (1995), and others, where 

hydrometer and dry sieve mesh were used.   

A clay-water solution is a result of homogeneous dispersion of very small clay 

particles.  The colloidal state lies somewhere between a solution and a suspension.  

Colloidal clay minerals are among the smallest crystalline particles known to exist, and 

are neither a suspension nor a solution.  Clay colloids are hydrophobic in nature, meaning 

they have an inherent resistance to interaction with water.  Aggregated microscopic clay 

particles in colloidal solutions are usually less than 2 microns in diameter.  Colloidal 

solutions do not settle under gravity within a reasonable time.  When the dispersed 

particles accumulate into a larger lump or aggregate, which settles relatively rapidly 

under gravity, then the dispersion is called as “suspension”.  The distinction in particle 

size between colloidal solutions and suspensions are arbitrarily taken in geochemistry as 

a Stokes radius (equivalent spherical radius) of 1 micron (van Olphen, 1977).  The 

equivalent particle size of any shape is computed in hydrometer tests velocity using 

Stokes Law.  Particles smaller than 1 micron are known as colloidal and larger than 1 

micron are clay suspensions. 

Colloidal clay solutions produce Brownian motion, where the small clay particles 

display an erratic and random motion in all directions.  The water molecules are in 

constant thermal agitation, and their velocity distribution is determined by the 

temperature of the system.  The motion of the water molecules, due to the fact that the 

fluid contains heat, causes the molecules to strike the suspended clay particles at random.  

The impact makes the particles move, and the net effect is an erratic, random motion of 

the particle through the fluid.  Brownian motion is the result of thermal activity of water 
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molecules around the clay particles.  Water molecules in solution constantly collide with 

clay particles and push the particles in random direction due to the net resultant force.   

The mean kinetic energy of a molecule in the liquid, which is equal to the average 

translational kinetic energy of the particles, is given by: 

kTmvE
2
3

2
1 2 ==            (3.2) 

where,  m  is the mass of a particle,  v  is the velocity,  k  is the Boltzman constant, and  T  

is the temperature.   From this formula (equation 3.2) it can be seen that the mean kinetic 

energy of Brownian motion is proportional to the temperature.  Equation (3.2) can also be 

used to find the velocity of a particle (Van Olphen, 1977).   It can be seen from the above 

energy conservation theory that the average particle velocity decreases with increasing 

mass, and Brownian motion does not exist for higher clay particles sizes. 

   Collision with fluid molecules can also make a suspended particle rotate.   This 

phenomenon is called rotational Brownian motion.   It has been found that bentonite clay 

particles can flocculate in the presence of an electrolyte leading to an increase in particle 

sizes and a reduction in reactivity (Van Olphen, 1977; Sridharan et al., 1999; Zhang et 

al., 1995; Quirk and Schofield, 1955; Keren and Singer, 1988).  To observe the relative 

particle sizes of clays, the hydrometer technique was used with a dispersing agent in 

deionized water, and in various synthetic inorganic solutions without a dispersing agent.  

This method gives the effective particle size in different pore fluids.  Though Stoke’s law 

is not strictly valid for non-spherical particles settling at high velocity, it has been used to 

find out the relative particle sizes in different pore fluids.   Six different solutions of 

various concentrations were used in addition to deionized water with 0.1M NaCl, 0.1M 

KCl, 0.1M MgCl2, and 0.1M CaCl2 as the lowest electrolyte concentrations. 

 

 

3.2.2 Test Results and Discussion 

 

Figures 3.11 and 3.12 give the relative particle size distribution of bentonite in 0.1 

molar concentration of four different solutions and in NaCl solutions with three different 
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concentrations respectively.  It can easily be observed that, relatively speaking, bentonite 

is least aggregated and exists as finer particles with 0.1M NaCl and 0.1M KCl solutions 

in comparison with 0.1M MgCl2 and 0.1M CaCl2 solutions (figure 3.11).   It can be 

concluded that an increase in the solution’s ionic valence increases particle aggregation 

and flocculation.  With an increase in electrolyte concentration, the bentonite particles 

have also become coarser.  Compared to NaCl solutions, KCl solutions cause more 

aggregation of particles.  A similar trend was observed where CaCl2 caused more 

aggregation than MgCl2.  Thus 0.1M CaCl2 causes maximum aggregation of particles 

among all the 0.1 molar solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11   Bentonite Particle/Aggregate Distribution with Various Inorganic  

Chemical Solutions of 0.1 Molar of Concentration 

 

The flocculation increases with an increase in electrolyte concentration, as shown 

in figure 3.12.  Higher concentrated electrolyte solutions reduce the diffuse double layer 

thickness by attracting the neighboring particles, thus creating aggregated particles which 

can easily flocculate and settle with time. 
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Figure 3.12  Bentonite Particle/Aggregate Distribution with NaCl Solutions of 

Various Concentrations 

 
 
 
3.3 Physical Properties 
 
 

Physical properties of bentonite in terms of its specific gravity of solids and 

Atterberg limits, namely liquid limit and plastic limit, are described in this section.   Both 

ASTM standard and British standards have been used in these investigations. 

 

 

3.3.1 Specific Gravity 

 

Specific Gravity, also known as SG, is a measure of the density of minerals 

compared to water.   Minerals with a specific gravity under 2 are considered light, 

between 2 and 4.5 average, and greater than 4.5 heavy (Faure, 1998).  The specific 

gravity may slightly vary for a given mineral because of impurities present in the mineral 
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structure.  Many researchers involved with bentonite materials have reported specific 

gravity values within a range of 2.4 to 2.65, depending on the percentage of 

montmorillonite mineral content (Malusis and Shackelford, 2002; Keijer and Loch, 2001; 

Keijer et al., 1999).   

The specific gravity of the bentonite particles was measured according to ASTM 

D- 854-02 (2002) using a 500 ml pycnometer volumetric flask.  Air-dry samples were 

soaked in tap water for at least 24 hours under vacuum so as to facilitate the removal of 

fine pore air bubbles from the water-clay solution.  The specific gravity of the solid 

particles was calculated using the following equation. 

   
fsfws

s
s WWW

W
G

−+
=             (3.3) 

where, Ws is the weight of the dry bentonite (taken after 24 hrs of oven dry at 105oC), Wfs 

the weight of the flask filled with bentonite and water, and Wfw the weight of the flask 

filled with deaired water only.  The average specific gravity of the bentonite used in this 

study was measured to be 2.55, as shown in the figure 3.13. 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 3.13  Experimental Variation of Specific Gravity 
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3.3.2 Atterberg Limits 

 

The plasticity behavior of bentonite clay and the effect of pore fluid on the liquid 

limit help predict the long-term performance of the liner.  Atterberg limits of soils can 

also be used to identify the mineral contents of the soil materials using the plasticity chart 

shown in figure 3.14 (after Holtz and Kovacs, 1981).  The liquid limit of bentonite is very 

high compared to other clay minerals because of its ability to disperse into extremely 

small particles with a tremendous amount of potentially absorbing surface.   The liquid 

limit of bentonite is primarily controlled by its diffuse double layer thickness.   The 

numerous factors affecting the thickness of diffuse double layer depend upon the 

characteristics of the pore fluid which are explained in chapter two, namely dielectric 

constant, electrolyte concentration, valence of the electrolyte, and temperature.  An 

increase in the diffuse double layer thickness causes an increase in the liquid limit.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.14  Plasticity Chart (after Holtz and Kovacs, 1981) 
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the bentonite particles, no groove can be cut through the material placed in the 

Casagrande apparatus.  Instead the liquid limit of bentonite clay was determined by the 

cone penetration method (BS1377-1975), where it is defined as the water content 

corresponding to 20-mm penetration. 

The plastic limit of the soil was obtained by ASTM Test Method (D 4318-00) 

using a rolling apparatus.  The test specimens were prepared by mixing with water and 

storing for at least 24 hrs for uniform absorption.  The average values of liquid limit and 

plastic limit using deionized water as pore fluid for the bentonite used in this research 

were found to be 546% and 56% respectively.  Montmorillonite minerals plot at extreme 

locations on the plasticity chart, close to the U-line, because of their high absorption 

capacity (figure 3.15).   The bentonite clay used in this study lies slightly above the U-

line, which falls out of the montmorillonite mineral zone depicted in the A-chart shown 

in figure 3.15.  This slight deviation of plasticity index (PI) from the theoretical U-line 

might be due to the arbitrary straight-line definition of the U-line, especially at such high 

liquid limits.  A similar deviation was also reported by Malusis and Shackelford (2002) 

for the bentonite used in their research.  Other researchers have found liquid limit values 

of smectite minerals as high as 1000% (Mesri and Olson, 1971; Alther et al., 1985; 

Reschke and Haug, 1991). 

Deionized water, tap water, and four different inorganic salt solutions with four 

different concentrations were used in liquid limit investigations of bentonite material in 

this research study.  Figure 3.16 shows the variation of cone penetration with water 

content for deionized water, tap water, and one molar solutions, while figures 3.17, 3.18, 

and 3.19 shows the results for 0.5 molar, 0.1 molar, and 0.01 molar salt solutions 

respectively. 
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  Figure 3.14  Wyo-ben bentonite in Plasticity chart 

 

 

 

Figure 3.15  Wyo-Ben Bentonite on the Plasticity Chart  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16  Penetration vs. Water/Solution Content (Water and 1 Molar Solution) 
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Figure 3.17  Penetration vs. Water/Solution Content (Water and 0.5 Molar Solution) 

  

It can be seen from figures 3.16 and 3.17 that there is a distinct difference 

between the liquid limit in water and that in higher concentrated salt solutions.  This is 

due to fact that the bentonite particles aggregate due to the reduction in double layer 
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reduction in double layer thickness, which eventually reduces the absorption capacity of 

bentonite.  As a result, the liquid limit of the material decreases.  Liquid limits for CaCl2 

solutions were found to be the least among all the solutions because of its higher 

replacement capacity and its lower water absorption affinity.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18  Penetration vs. Water/Solution Content (Water and 0.1 Molar Solution) 

 

    

 

 

 

 

 

 

 

 

 

 

Figure 3.19  Penetration vs. Water/Solution Content (Water and 0.01 Molar Solution) 
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Figure 3.20  Variation of Liquid Limits with Electrolyte Concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21  Variation of Liquid Limits with Types of Electrolyte Solutions 
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3.4  Swell Index 

 

Swell index tests were carried out according to the ASTM Standard Method 

(ASTM D 5890-02) using the various concentration electrolyte solutions which were 

presented in the previous section.  A modified method was used by Reschke and Haug 

(1991), where 3g of samples were allowed to soak for 24 hours, and the swell index was 

calculated by dividing the swell volume by the specific gravity of sample.  Swell index of 

Wyoming bentonite has also been investigated by Alther et al., 1985, Xeidakis (1996), 

Zhang et al., (1995), Jo et al., (2001), Stern and Shackelford (1998), Shackelford et al., 

(2000), and others.  It has been found to range between 25 and 65 ml/2g.   The main 

causes of swelling of smectite clay (i.e. bentonite) are (1) the magnitude of cation 

exchange capacity of the clay mineral interlamellar surface, (2) the type of cations 

present within the clay surfaces, and (3) the interaction between cations and water 

molecules (Odom, 1984; Alther et al., 1985; Köster, 1996; Kjellander et al., 1988; 

Shackelford et al., 2000). 

 

 

3.4.1 Test Procedure 

 

  The newly published ASTM D 5890-02 standard was adopted in determining the 

swell index of the bentonite.   To perform these tests, a 2g sample of dried and finely 

powdered bentonite clay is dispersed into a 100 ml graduated cylinder in 0.1g increments. 

A minimum of 10 minutes must pass between additions to allow for full hydration and 

settlement of the clay to the bottom of the cylinder.   These steps are repeated until the 

entire 2g sample has been added.  The sample is then covered and protected for a period 

of 16 - 24 hours, at which time the level of the settled and swollen clay is recorded to the 

nearest 0.5 ml.  The swell index is expressed in ml/2g of bentonite. 
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Deionized water and four types of salt solutions at various concentrations were 

used in swell index experiments.  The results and effects of various chemical solutions 

are discussed in the following sub-section.   

 

 

3.4.2 Effect of Chemical Solution Species 

 

The swell index of Wyo-Ben bentonite was found to be 60 ml/2g for the 

suspension in deionized water.  However, the maximum swell index of 67 ml/2g has been 

measured in 0.01 molar NaCl solution as shown in figure 3.22, which could be due to the 

possibility of more quasi-crystalline water layer formations in and around bentonite 

particles.  As suggested by Odom (1984), the maximum adsorption occurs when Ca and 

Mg cations together constitute ¼ to 5
1  of the total exchangeable cations, which allows 

several layers of water to be developed by Na ions.  The 0.01 molar NaCl solution may 

supply the appropriate amount of free sodium ions that could form several layers of 

quasi-crystalline water layer around the surface of the bentonite, which are responsible 

for higher swelling and hydration.    

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.22  Swell Index of Bentonite in Inorganic Chemical Solutions 
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It can be seen from figure 3.22 that the swell index is higher for monovalent 

solutions compared to divalent solutions of similar concentrations.  Swell index values in 

KCl solutions are lower than those of NaCl solutions of equal concentrations because of 

the ability to form rigid linkage between potassium ions and negatively charged clay 

surfaces.  This strong linkage could reduce the diffuse double layer thickness, which is 

directly responsible for the reduced swelling volume of the bentonite clay materials.   In 

the case of divalent solutions, the divalent cations replace the monovalent cations on the 

surface exchangeable space and reduce the thickness of the diffuse double layer.    

  As shown in figure 3.23, minimum swell index values are obtained in the case of 

higher concentrations of CaCl2 solutions since at higher concentration, calcium cations 

can substantially replace monovalent cations and water molecules on the surface of the 

bentonite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23  Variation of Swell Index with Concentration of Salt Solutions 
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3.5  Cation Exchange Capacity of Bentonite 

 

  Researchers have been measuring the cation exchange capacity (CEC) of clay 

minerals in many different ways.  CEC can be determined by the sodium saturation 

method as described by Chapman (1965), where the soil sample is first saturated with 

sodium, and the sodium is subsequently replaced by ammonium ions.  The concentration 

of the recovered sodium is determined by flame photometry which is then expressed in 

terms of meq/100 g of oven dry soil (Wentink and Etzel, 1972).  Other methods used in 

measuring CEC are X-ray diffraction  (Ben et al., 2000; Kaufhold et al., 2002), infra-red 

chromatography/spectroscopy (Petit et al., 1998;  Hwang and Dixon, 2000), cesium 

chloride adsorption (Itami and Tamamura, 1999), adsorption of a copper ethylenediamine 

complex (Bergaya and Vayer, 1997), and strontium chloride adsorption (SrCl2) (Schaefer 

and Steiger, 2002).   Research on methylene blue adsorption on clay minerals has been 

conducted extensively by analyzing clay samples collected from various parts of the 

world (Hang and Brindley, 1970; Grim 1968; Higgs, 1988; Taylor, 1985; Santamarina et 

al., 2002).   

 

 

3.5.1 Methylene Blue Test Procedure 

 

Methylene blue (MB) adsorption was found to be one of the most reliable and 

simple methods to obtain information on the properties of clay minerals, including cation 

exchange capacity (CEC) of soils and other fine grained minerals.  It is also used as an 

indirect quality indicator for swelling activity of clay materials.  If a significant amount 

of methylene blue is adsorbed by the clay minerals, this may lead to the conclusion that 

the clay’s swelling activity is higher, even though some other minerals which do not 

swell might also adsorb methylene blue. 

The cations in the diffuse double layer are exchangeable with those in the free 

water.  Therefore, methylene blue will exchange cations from both of these sources.  In 

order to eliminate the excessive value of free water cations, clay samples are needed to be 
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mixed with sufficient deionized water in order to dissolve the precipitated salts and 

cations existing in the free pore fluid.   

The methylene blue molecule consists of an organic base in combination with an 

acid as shown in figure 3.24.  The size of a single molecule of methylene blue as drawn 

in figure 3.25 has been reported by a number of authors and is tabulated in Table 3.2. 

 

 

 

 

 

 

 

  Figure 3.24  Methylene Blue Chemical Structure 

 

 

 

 

 

 

 

 

 

  

 

  

When methylene blue (dye/powder) is dissolved in water, it will disperse to form 

a monomer (single molecules) at lower concentrations (less than 10-3 mol/m3), or in 

monomer-dimer (2 molecules) equilibrium at higher concentrations (about 10-2 to 1 

mol/m3) (Taylor, 1985).  The chemical formula of C16H18N3SCl corresponds to a 

molecular weight of 319.87 g/mol for methylene blue dry die.  The methylene blue 
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molecule contains a negatively charged (Cl-) ion and a large positively charged ion which 

drives away the positively charged cations loosely bonded with the clay surfaces at the 

internal and external faces.  The process continues until all the cations have been expelled 

and replaced by methylene blue molecules with higher fixation attraction.   

 

Table 3.2   Dimensions of Methylene Blue Single Molecule (After Taylor, 1985) 
 L B LxB L H LxH B H BxH 
Author (nm) (nm) (nm2) (nm) (nm) (nm2) (nm) (nm) (nm2)

Hofman et al. - - 1.95 - - - - - - 

White and Cowen - - 1.95 - - - - - 0.25 

Kipling and Wilson 1.6 0.84 1.34 1.60 0.47 0.75 0.84 0.47 0.39 

 1.25 0.57 0.71 1.25 0.51 0.64 0.57 0.51 0.29 

Hofmann et al. 1.50 0.65 0.98 1.50  0.77 0.65  0.33 

Hang and Brindley - - 1.29 - - 0.55 - - 0.25 
 

Methylene blue replaces the clay cations irreversibly as indicated by following reactions. 

 

Ca-Na-Mg clay + Methylene blue (MB) hydrochloride → MB Clay + Ca-Na-Mg chloride 

 

Na-bentonite indicates higher CEC because of its higher interlayer spacing as 

compared to Ca-bentonite where the entry of methylene blue molecules is expected to be 

restricted because of its limited interlayer (lattice) expansion.   

Methylene blue chloride powder (Fisher Scientific, Pittsburgh, PA) was used in 

this research and the spot method (European standard) has been adopted for measuring 

CEC for bentonite material.    The test procedure can be briefly described as follows: 

(a) The methylene blue solution is prepared by mixing methyelene blue powder 

and deionized water at the ratio of 1g to 200 cc water. 

(b) A sufficient amount of deionized water is added to the bentonite clay at about 

500 mg to 2 g, so as to produce a suspension or slurry consistency of the clay 

particles. 
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(c) A magnetic stirrer with a speed of 400 to 700 rpm is used to stir the bentonite 

in a glass container continuously until the end of titration by methylene blue. 

(d) A methylene blue solution is added to the clay suspension in 0.5 ml 

increments and stirred for at least 15 minutes. 

(e) After each addition of methylene blue, a small amount of clay suspension 

after stirring is removed by a glass rod and then placed on Fisher brand filter 

paper P5. 

(f) The “end point” is expected to be reached when a permanent light blue halo 

around the wet soil spot is formed by the unabsorbed methylene blue in excess 

of the amount required to replace the exchangeable cations of the clay 

particles. 

(g) In order to confirm the end point, step 5 is repeated after a longer stirring for 

about an hour in order to totally adsorb the methylene blue on the clay 

surface.  If the halo disappears on the filter paper, 0.5 ml of MB is added and 

steps 5-7 are repeated until a permanent halo appears around the wet clay spot 

on the filter paper. 

The total volume of methylene blue solution added in this process is recorded and 

used to calculate the cation exchange capacity by the following equation. 

 

 

 

(mEq/100 g)   (3.4) 

 

 

3.5.2 Test Results and Discussion 

 

CEC is normally expressed in meq/100 g of clay sample.  The CEC of relatively 

pure smectite clays ranges between 70 and 130 meq/100 g (Keijer et al., 1999; 

Triantafyllou et al., 1999; Shackelford and Lee, 2003; Odom, 1984; Sanchez et al., 1999; 
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Gleason et al., 1997; Kahr and Madsen, 1995).    However, Malusis and Shackelford 

(2002) investigated a bentonite having a CEC of 47.7 meq/100 g.    

  

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.26  Cation Exchange Capacity of Bentonite 
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distinct variation of CEC is noticeable due to the amount of bentonite and water added in 
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CHAPTER FOUR 
 
 

EQUIPMENT DESIGN & FABRICATION 
 
 
 
4.1 Permeability Equipment 

 

Standard pressure panels for permeability tests are commonly used to perform 

hydraulic conductivity tests, but cannot be used directly with highly corrosive leachates 

collected from landfill sites and or synthetically mixed chemicals.  Aggressive inorganic 

or organic chemicals can cause the panel tubes and fittings to corrode. To protect the 

pressure panel, special buffer cells were designed and fabricated as shown in the 

schematic diagram in figure 4.1.   These buffer cells are connected with the various inlets 

and outlets of the main pressure panels.  The main criteria considered during design and 

fabrication of these cells are  

(a) to be used as a substitute for the burette attached to the pressure panels,  

(b) to prevent corrosive liquids or leachates from contacting metal fittings and 

pressure regulators, and thus preventing corrosion, clogging and damaged 

panel parts,  

(c)  to accommodate a large quantity of influent to be permeated through the 

specimen in an uninterrupted fashion,  

(d)  to fill the cells in an uninterrupted fashion whenever necessary,  

(e)  to collect the influent and effluent samples at any pore volume of 

permeation while continuing the permeability test, and  

(f)  to apply and maintain any specific hydraulic gradient during the test. 
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Figure 4.1  Schematic Diagram of Permeability Test Setup 

 

 

4.1.1 Design Concept 

 

The permeability cells designed and fabricated in this study are suitable for use in 

both constant head as well as variable head conditions in rigid wall and flexible wall 
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the existing pressure panels available in the Geoenvironmental Laboratory at the 

University of South Florida (USF).  Compressed air pressure regulated from the panel 

can be utilized through the buffer cells.  Connections of the cells with the pressure panels 

were made in such a way that the influent and effluent pressure during the permeability 
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panel board.  Buffer cells were designed to accommodate permeability tests on many 

different types of soils with a wide range of permeability.    Soils with low permeability 

such as bentonite and other clays, cause small amounts of flow through the specimen 

even at higher hydraulic gradients while soils with high permeability such as coarse sand 

generate a high rate of flow under low gradients.  Buffer cells have been designed with 

three chambers of different diameters to indicate with high precision any amounts of flow 

in the influent and effluent tubes. 

Since the duration or pore volume of flow is an important factor in investigating 

permeability of soils to chemicals, the cells were designed considering a high volume 

capacity so that the tests could be carried out uninterrupted overnight or for longer 

intervals.   

Uniformity of synthetic chemical solutions can be maintained within the effluent 

cell for a long duration of time during the permeability since the cell chambers are made 

of chemically inert materials, and because of their high storage capacity.   To verify the 

chemical composition of synthetic solutions, to monitor leachates quality in the influent 

cell, and to conduct chemical analysis of the effluent solution, control valves have been 

provided at the bottom of both influent and effluent cells which provide easy sample 

collections at any interval of time while running the permeability tests.  

Replenishment of influent can be carried out in any quantity through the bottom 

control valves by hydrostatic force or under pressure, and through the top control valves 

using a syringe or fill pump connected with the pressure panel.   Replenishment from one 

chamber to another can also be achieved by using a pressure differential across the 

connecting bridge tubing during the test.   

Highly concentrated chemical solutions and contaminant leachates used as 

permeants might cause chemical precipitation and deposition within the cells as well as in 

the connecting tubings.  Light precipitation and deposition within the cell chambers can 

be dissolved or removed in one chamber at a time by water jetting or using cleaning 

solutions without discontinuing the tests.   High precipitation can be cleaned after 

completion of the tests when the individual parts and tubings are dismantled and are 

typically cleaned using conventional or special acid cleaners. 
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4.1.2 Materials and Fabrication 

 

The cells, as shown in figure 4.2, consist of three different diameters clear acrylic 

(Plexiglass) cylinders placed in between two metallic plates.   To prevent the chemical 

corrosion of the metallic plates due to highly concentrated synthetic chemical solutions, 

the bottom metallic plate was made of highly corrosion-resistance Type 316L stainless 

steel.    Plexiglass cylinders are fitted into grooves cut on the top and bottom plates.  The 

cells are fabricated in such a way that, after tightening, no leakage of liquid is possible 

even at high applied pressures (100 to 120 psi).   All cylinders are 11 inches long and 

graduated in length and volume, which allows the measurement of the permeants with an 

accuracy of 1 mm in elevation and 0.1 cm3
 in volume.   The cylinders are connected at 

the top and bottom by flexible transparent rubber tubings to two central blocks, which are 

made of stainless steel.  All the connecting lines are made of transparent nylon tubes of 

⅛-inch outside diameter.   Stainless steel central blocks were chosen for their high 

strength and chemical /corrosion resistance characteristics.   The top central block is 

connected to the burette of the pressure panel, through which the pressure is regulated.   

The other central block, which is attached at the base, is connected to the permeation 

chamber where the specimen is placed. 

The top central block, connecting each of the three buffer cylinders controls 

the applied pressure from panel regulator with an accuracy of 0.1 psi.  However, since no 

separate regulator is attached to individual buffer cells, the pressure applied on the each 

of the cylinders is constant.   Each cylinder is equipped with a vent valve which is used to 

release pressure and to facilitate backfilling of the permeant liquid. 

The bottom central block connecting each of the three cylinders at their bases 

controls the flow of permeant in and out of the cylinders.   Nickel plated ball valves are 

connected to each of the outlet nylon tubes at the bottom central block, and are used to 

control flow of the permeant from individual cylinders and to collect liquid samples at 

any time during the permeability tests without interrupting flow through other tubes.   

The required amounts of permeant samples (leachate) before and after passing through 
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the test specimen are collected from the corresponding (active) cylinder for further 

chemical analysis.    

 

       

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

Figure 4.2  Schematic Diagram of Permeameter Cell 
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Since the inside diameter of the largest cylinder is 5½-inch, over one gallon (4 

liters) of permeant can be stored.  Each test can therefore, run for quite a substantial 

period of time depending on the applied hydraulic gradient, soil permeability, and 

thickness of the test specimen.   However, for very low permeability specimens, where 

the amount of permeant is very small, the small diameter (⅜-inch ID) cylinders are used 

for flow measurement as well as for collecting the permeant.   The small cylinders can 

also be used for highly permeable specimens to determine the coefficient of permeability 

(hydraulic conductivity) and to collect small amount of liquid permeants over a short 

period of time.   

The flow of permeant from any cylinder can be cut-off and switched to another 

cylinder within the same cell using the bottom central block.   Throughout the process, 

the flow remains uninterrupted.  By cutting off the flow, the permeant can be collected or 

replenished up to any desired level while the permeability test is continuing using the 

other cylinder.   Backfilling into the cylinder can be expedited by releasing the attached 

vent valve placed at the top of the cylinder.   Any cylinder can be separately cleaned of 

any chemical deposition or sedimentation by flushing it with cleaning agents or tap water.   

The entire cell can also be dismantled after completion of any test, and cleaned and 

reassembled for subsequent experiments. 

The permeameter, as shown in figure 4.3, consist of 5-½-in OD and 5-in ID clear 

acrylic (Plexiglass) cylinder placed in between two metallic plates and two 4-in diameter 

stainless steel platens.   Plexiglass cylinders are fitted into the grooves cut on the top and 

bottom plates.  The height of the permeameter cylinder is 12 inches which can easily 

accommodate specimens of up to 8-in long.  A control valve at the top plate of the 

permeameter is connected with the pressure panel through which compressed air is 

applied to the cell.  Pressure applied at the cell liquid surface acts as the cell pressure for 

the specimen, which is submerged in.   Three stainless steel control valves are connected 

at the base plate of the permeameter as shown in figure 4.3 (b).  The middle control valve 

is connected at the bottom of the platen through which the influent enters into the test 

specimen.  After permeating through the specimen, the effluent flows through the top 
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platen into the effluent buffer cell.   All the connecting lines are of transparent nylon 

tubes ⅛-inch in outside diameter.    

A split mold 4-in ID and 1-in long has been designed and fabricated to be used in 

preparing the clay specimens onto the bottom platen within the permeameter.   The split 

mold fitted with a rubber membrane is placed flush with the bottom platen so that the 

loose dry bentonite powder does not slip through the sides of the platen while preparing 

the specimen.  Both top and bottom plates of the permeameter are made anodized iron for 

corrosion resistance and longer service life.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (a)      (b) 

Figure 4.3  Schematic Diagram of Flexible Permeameter (a) Permeameter Cell 
(b) Bottom Connection 
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4.2  Diffusion Equipment 
 
 

Cheung, (1994) described the use of an used apparatus for in-diffusion 

(electrolyte solution passes through the specimen from high to low concentration) and 

through-diffusion (electrolyte solution passes over one side of the specimen and is 

collected from the other side), Eriksen, et al., (1999) used a diffusion cell where bentonite 

was statically compacted in the diffusion cylinder (internal diameter of 10 mm and length 

of 5 mm) to a dry density of 1800 kg/m3.   Inlet and outlet channels were fitted with a 

metallic filter (0.82 mm thick), and the clay was equilibrated with the aqueous solution 

for at least three weeks by pumping a groundwater solution.  Higashi et al., (1990) 

investigated the diffusivity of nuclide transport in water (titrated water) through bentonite 

by using a diffusion cell 4 cm long and 2 cm in diameter.  Pre-saturation of samples was 

carried out by submerging the specimen in water after placing it into the cell.  Diffusivity 

of ions, especially radio-nuclides, through compacted sodium bentonite were investigated 

by Kim et al., (1993) by a method called “back-to-back”, where the source solution is 

allowed to diffuse in plane from the center toward both ends of the specimen.  In this 

method the bentonite clay was saturated with the solution to form a slurry before being 

dried and cut into slices 2.5 cm in diameter and 2 cm in length.  The sliced specimens 

were then placed into the diffusion circular metallic cells where the specimens were 

allowed to swell upon saturation with the solution to a predetermined size and volume.   

An equipment called “DKS permeameter” (diffusion, convection, sorption) was 

used to study soil-contaminant transport mechanisms by Mahler and Velloso (2001).  In 

this technique, the soil sample is molded in the middle of the permeameter, and both 

source solution and distilled water are allowed to percolate into the top and bottom 

channels, which are made of highly permeable porous materials, thus creating a constant 

concentration gradient through the specimens.   

The diffusion characteristics of compacted sodium bentonite in terms of ionic 

charges and orientation of clay particles were investigated by Sato (2000) and Sato and 

Suzuki (2003) using through-diffusion techniques, where bentonite specimens were 

placed in a diffusion cell and then compacted and saturated with various electrolyte 
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solutions.  Diffusion tests for compacted clay using compaction mold type cells were also 

used by Shackelford (1988, 1990, 1991, 1994), Shackelford and Daniel (1991), 

Shackelford et al., (1999), where the clay samples were compacted in the mold at 

optimum water content before being saturated with water for a period of 17 to 160 days.   

Lake and Rowe (2000, 1997) devised an apparatus similar to the one used in this 

study to measure the diffusion coefficient of GCL materials under specified volume 

diffusion (SVD) condition, where various types of inorganic chemical solutions were 

used as a source (figure 4.4).  Here the clay specimens were allowed to swell by 

hydration up to any degree, resulting in a wide range of void ratios.  SVD allows the 

comparison of diffusion results in various controlling solutions by controlling the final 

saturated void ratios of the bentonite clay specimens.   

Most of the above diffusion cells were adopted to satisfy the investigators interest 

in particular factors, field requirements and environmental conditions such as highly 

traceable chemical elements, long periods of diffusivity, simulating in-situ compaction 

and saturation, or automation of the set-up among others.   

  
Figure 4.4  Specified Volume Diffusion Cell (After Lake and Rowe, 2000) 
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4.2.1 Design Concept 

 

The following factors have been considered in designing the diffusion cell in this 

study. 

(a) It is necessary to obtain a uniformity swelling bentonite clay specimen in 

terms of density and water content. 

(b) Full saturation of the clay specimens must be achieved within a short 

period of time. 

(c) The void ratio of the specimens must be varied by controlling the 

thickness and changing the dry bentonite weight, or by controlling the 

weight while thickness at full saturation. 

(d) Collection of the source and receptor solutions must be easily done while 

continuing diffusivity testing through the specimen when necessary. 

(e) Disturbance to the prepared samples within the mold must be avoided. 

(f) Provisions must be made to apply a hydraulic gradient through the 

specimen for further advection analysis if required. 

(g) High storage capacity of the source solution must be secured in order to 

continue the diffusion experiment for a long period of time without 

affecting the quality and concentration of the solution. 

The diffusion apparatus designed in this study is of the considered to specified 

volume diffusion (SVD) type as shown in figure 4.5, where the volume of the specimen 

remains the same throughout the whole diffusion process.   Specimens are made by 

slowing consolidating the slurry samples prepared by mixing bentonite with high 

amounts of water (above their liquid limit).  The idea of making specimens from slurry 

has come up from the fact that dry bentonite powder starts to swell as soon as it comes 

into contact with water.  An outer sealed layer is created, so uniformity of the specimen 

cannot be achieved for small amounts of bentonite mixed with water.   Furthermore, the 

amount of swelling bentonite is not uniform across portions of the specimen, which could 

develop channels for the fluid to pass through during diffusion.  It is also not possible to 

make uniform bentonite samples by mixing with low amount of water (below liquid 
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limit) because of air bubbles trapped within the specimen during preparation.  Preparing 

the specimens outside the diffusion cell may cause disturbance to specimens, making it 

difficult to place the specimen uniformly in the cell.  

Both source and receptor containers need to be transparent so that the level of 

fluid can be monitored during diffusion and refilled if necessary to maintain a constant 

level.   It is noted that fluid levels may change due to osmotic flow, thus creating an 

unwanted hydraulic gradient.   
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Figure 4.5  Diffusion Set-up with Clay Slurry (a) Initial Before Consolidation 
(b) Final After Consolidation

(a) (b)

Internal piston

O-ring

Soil slurrry

Porous stone

Graduated pipette

Internal piston

O-ring

Soil slurrry

Porous stone

Graduated pipette

Figure 4.5  Diffusion Set-up with Clay Slurry (a) Initial Before Consolidation 
(b) Final After Consolidation

(a) (b)



www.manaraa.com

91 

4.2.2 Materials and Fabrication 

 

Constant head rigid wall permeameters manufactured according to ASTM D-2434 

have been modified to create the diffusion cells as shown in figure 4.5.  Rigid 

permeameter walls which contain the source fluid and the clay specimen have been 

fabricated in the machine shop at the University of South Florida.  The cylinder is made 

of transparent acrylic material (plexiglass) 6-in long, 3-in ID, and ¼-in thick.  A thick O-

ring is placed within the groove on both the bottom base plate and the top metallic platen 

in order to prevent any leakage during diffusion.  In order to further prevent leakage, 

sufficient vacuum grease was pasted in and around the O-rings.  The acrylic chamber 

permits viewing of the sample during testing.   The end plates are constructed of anodized 

aluminum for rust resistance.  An internal piston, which is placed inside the diffusion 

cylinder, is also made of acrylic material and 2-in OD and ¼-in thick.  The receptor is a 

graduated pipette ½-in internal diameter and 10-in long which can contain up to 30 mL of 

solution.  A cap is fitted at the open end of the pipette to prevent any ingress of impurities 

and evaporation from the solution during testing.   A hand-held rubber suction pump with 

a smaller diameter pipette is used to collect receptor fluid samples for further chemical 

analysis during diffusion tests. 

Both the source chamber and receptor are graduated so as to monitor the level of 

the fluid.  Porous stones 3-in in diameter and ¼-in thick are placed at top and bottom of 

the clay specimen inside the source chamber to provide filtering during sample 

preparation and to maintain uniformity of the specimen thickness.  Because a tight seal 

was required, fitting of the porous stones inside the source chamber was one of the most 

difficult tasks in the whole assembling process.  The bottom porous stone had to be 

placed before the slurry sample was poured into the chamber, while the top one was 

placed after pouring the slurry.  Grooves were cut along the perimeter porous stone so as 

to fit O-rings as shown in figure 4.6.   

A sufficient amount of vacuum grease was pasted along the O-ring and 

circumference of the top porous stone before placing at the top of the source chamber and 

subsequently pushing through the plexiglass of the chamber.   Tight dimensional 
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tolerance O-ring is necessary so that the porous stone assembly does not fit too tightly 

into the chamber which might cause cracking and eventually breaking upon pushing with 

the internal piston. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.6  Modification of Porous Stone
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CHAPTER FIVE 
 
 

HYDRAULIC CHARACTERIZATION OF BENTONITE 
 
 
 

In this chapter, characterization of bentonite in terms of its hydraulic conductivity 

is presented.  Two types of permeameters, namely flexible wall and rigid wall, with 

various inorganic chemical permeants under various hydraulic gradients and pre-

hydration conditions have been used in this study.  Chemical analysis of effluent 

following permeation through bentonite is also reported in this chapter.   

 

 

5.1  Hydraulic Conductivity of Bentonite 

 

Deionized water, tap water, and synthetic inorganic salt solutions of various 

concentrations and combinations have been used as permeants for bentonite clay in this 

investigation.  Various chemical permeants, permeameter types, and the effects of various 

factors controlling conductivity are discussed in this section.  Fifty grams of air-dried 

bentonite samples, 7.5 mm thick and 10.16 cm (4-in) in diameter were used in most of 

the hydraulic conductivity experiments conducted in the flexible wall permeameter.  The 

corresponding dry density is 0.83 g/cm3.  A different setup was used for rigid wall 

permeameters, as discussed later in this chapter. 
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5.1.1 Inorganic Chemical Permeants 

 

Deionized water with less than 5 ppm of impurities, tap water with 200 to 300 

ppm of ionic concentration, and four different salt solutions (NaCl, KCl, CaCl2 and 

MgCl2) of various concentrations and combinations, as shown in Table 5.1, were used in 

hydraulic conductivity tests as permeants through bentonite clay specimens.  All the salts 

are Fisher Scientific Lab certified brands and have been used according to their formula 

weights for preparing synthetic inorganic solutions.  NaCl, KCl, and CaCl2 are in the 

form of anhydrous granular salt while MgCl2 is a hexahydrate crystalline salt having the 

chemical formula of MgCl2.6H2O.  Deionized water, commercially available in plastic 

one-gallon bottles was used as a solvent for those salt solutions. 

  The salt solutions have been chosen to investigate the effects of various 

concentrations, cation size, valence, and ionic strength.  Deionized (DI) water is used as 

the reference and controlling solution, in addition to initial pore fluid saturation.  

Concentrations of the electrolyte solutions were varied from 0.1M to 5M and were 

prepared by dissolving crystalline/granular salts with DI water.  NaCl and KCl were  

chosen to investigate the effects of monovalent cations and hydrated ion size (Na+ and K+ 

have different hydrated radius) while CaCl2 and MgCl2 were chosen to investigate the 

effect of divalent cations (Ca2+ and Mg2+) that are commonly found in natural aqueous 

systems.   

  Sufficient quantities of solutions were prepared in order to last for the whole 

period of conductivity experiments so that the uniformity of the solutions can be 

maintained.  The synthetic solutions were transferred to the largest chamber of the cells 

after being prepared in the lab at normal room temperature (21o ~ 22oC).   

 

 

5.1.2 Flexible Wall Permeability 

 

Permeability tests have been performed according to ASTM standard (D-5084) 

for flexible wall permeameters. Since the effluent (tailwater) level increases with time 
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during the tests, falling head assumptions with increasing tailwater pressure calculations 

have been adopted for the calculation of the coefficient of permeability. The modified 

formula used in the calculation is given in equation (5.1). 
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where a is the area of the apparatus pipette, Lsample is the length of the sample, Asample is 

the cross sectional area of the sample, t is the time between initial and final readings, h is 

the water elevation in the pipette, p is the pressure in the pipette, and subscripts in and out 

denote inflow and outflow, respectively.   A schematic diagram has been shown in figure 

5.1 to describe all the terms of equation (5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Schematic Diagram of Flexible Wall Permeameter Set-up 
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The detailed description of the test apparatus has been given in Chapter 4.  Three 

stainless steel ball valves are connected with the bottom permeameter plate, which are 

used to (i) fill and drain the chamber through the base, (ii) supply influent from the 

influent cell to the specimen through the base platen, and (iii) discharge effluent from the 

specimen to the effluent cell through the top platen.   An opening at the top of the 

permeameter plate is connected through the ⅛-inch (OD) nylon tubing to the pressure 

panel through which the regulated air pressure is applied to the cell water.   Figure 5.2 

shows the connections of all the tubings with various components of influent chamber, 

permeability cell, and effluent chamber with the pressure panel. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.2  Flexible Wall Permeameter 
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5.1.2.1 Test Procedure 

 

The test procedure described in this section includes sample preparation, sample 

saturation, permeation phase, and termination criteria.  Sample preparation is one of the 

most critical steps in the flexible wall permeability experiments since proper preparation 

is crucial in minimizing experimental errors from leakage, sample loss, and disturbance. 

 

 

5.1.2.2 Sample Preparation 

 

All the components of the permeameter and supporting devices are shown in 

figure 5.3.   A vacuum pump was used during sample preparation for fitting the rubber 

membrane into the split mold so that the mold can be easily placed on the bottom platen 

of the permeameter, and to secure the bottom porous stone in place while placing the 

powdered sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 5.3  Components of Flexible Wall Permeameter 
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The following steps are carried out in sequence during the preparation of clay 

specimens in the flexible wall permeameter.   

Step 1:  The groove of the base plate of permeameter is cleaned thoroughly with a 

brush and cloth/tissue paper.  The O-ring, lubricated with silicon grease, is then fitted to 

prevent base leakage.  A porous stone and filter paper (Fisher Scientific brand) are placed 

on the bottom platen of the permeameter. 

Step 2:  A leak free latex membrane is wrapped over the split mold and manually 

stretched to fit the inner side of the mold in an unwrinkled fashion.   

Step 3:  A vacuum pump is connected with the mold, and suction is applied to 

remove air from the space between membrane and mold so that the membrane can follow 

the inner shape of the mold.  The split mold wrapped with the membrane is then placed 

over the bottom platen while the vacuum pump is kept on. 

Step 4:  An accurately measured amount (50 g) of air-dried bentonite powder is 

spread over the filter paper in the mold and is lightly compacted uniformly using a 

specially designed compaction rod.  A spoon can also be used to lightly fill-up any voids 

left along the perimeter. 

Step 5:  The top filter paper and porous stone are placed on the bentonite powder 

carefully to prevent disturbance or loss of clay powder.   

Step 6:  The top platen is placed on the porous stone and the vacuum pump is then 

disconnected.  The rubber membrane is unrolled from both ends of the split mold and is 

extended over both top and bottom platens.  The mold is then split open and is removed 

carefully. 

Step 7:  An O-ring expander whose diameter is at least ½-in larger than that of the 

specimen is used to place one or two O-rings on the grooves at both top and bottom 

platens in order to prevent any leakage from the cell into the specimen and to keep the 

membrane in place. 

Step 8:  The top platen is connected tightly with the outlet tubings to prevent cell 

water from seeping through.  The plexiglass cylinder is then placed on the O-ring fitted 

on the chamber base.  The top cover of the chamber is tightened to seal the cell while 

pressure is applied to the chamber during permeability testing. 
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Step 9:  Tap water is filled into the permeameter cell through the bottom opening 

slowly to minimize disturbance to the newly prepared sample.  Water is filled up to a 

level of 1-2 inches below the top cover.   

After completion of sample preparation and water filling, the permeameter is 

shifted to the pressure panel where the influent and effluent chambers are already 

assembled.  The permeameter is then connected to both chambers through the base 

tubings as shown in figure 5.2.  All the above steps are shown in figure 5.4. 

 

 

 

 

 

 

 

 

 

(a) Sample Preparation (Step 1) 

 

 

 

 

 

 

 

 

 

(b)  Sample Preparation – (Step 2) 

 

Figure 5.4  Sample Preparation for Flexible Wall Permeability Test 
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(c)  Sample Preparation – (Step 3) 

 

 

 

 

 

 

 

 

 

(d)  Sample Preparation – (Step 4) 

 

 

 

 

 

 

 

 

 

(e)  Sample Preparation – (Step 5) 

 

Figure 5.4  Continued 
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(f)  Sample Preparation – (Step 6) 

 

 

 

 

 

 

 

 

(g)  Sample Preparation – (Step 7) 

 

 

 

 

 

 

 

 

                (i)  Sample Preparation – (Step 9) 

 

(h) Sample Preparation – (Step 8) 

 

Figure 5.4  Continued 

 

  



www.manaraa.com

102 

5.1.2.3 Sample Saturation 

 

Back pressure saturation is used as outlined in ASTM D5084 to ensure full 

saturation.  Both influent and effluent chambers are filled up to the same level so that the 

same pressure head can be maintained during saturation of the specimen.  The 

permeameter cell is also filled with tap water through which the confining pressure is 

applied to the specimen.  All the pressure regulators connected with the chambers and 

permeameter cell, are turned to zero pressure before opening any controlling valves of the 

chambers and cell.  All the vent valves are closed and the valves that control flow 

through the specimen are opened so that the water can flow into the specimen and the air 

bubbles can be flushed out of the specimen.  Air pressure is first applied to the 

permeameter cell so that the cell water can develop an initial confining pressure of about 

20 to 35 kPa (3 to 5 psi).  Air bubbles will squeeze out of the specimen to the connecting 

chambers due to this initial confining pressure.  Influent and effluent chambers are 

connected through a bridge on the pressure panel so that the same pressure is applied to 

both chambers through a single regulator.  Air pressure is applied to the chambers as well 

as to the permeameter cell gradually so as to maintain a pressure difference of 20 to 35 

kPa (3 to 5 psi) between the confining pressure and chamber pressures at all times. 

It is imperative that the pressure head in both influent and effluent chambers are 

the same during saturation, so that no flow occurs from one chamber to the other.   To 

achieve this, the same air pressure regulator is used to apply pressure to both chambers 

through a bridge connection in the pressure panel as mentioned earlier. The pressure in 

the cells is raised gradually up to 415 kPa (60 psi) and is kept 20 to 35 kPa (3 to 5 psi) 

below that of the permeameter chamber during the whole period of saturation.  A similar 

backpressure was used by Boynton and Daniel (1985) in flexible wall permeability tests.  

Backpressure applied to the specimen through the top and bottom platens, is not allowed 

to surpass the confining chamber pressure to prevent bulging of the specimen.   This 

process of saturation by backpressure was continued for at least 5-7 days to completely 

dissolve air or gaseous substances from the test specimen and to complete any chemical 
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primary reaction that might occur with water and chemical compounds present on the 

surface of the bentonite clay materials.    

It is worth noting that removal of air bubbles and gaseous substances from the test 

specimens by flowing water from one end to the other is not advisable because various 

dissolved substances will leach out of the specimen with the water flow during saturation.   

Maximum saturation of the specimen is considered to be accomplished when no 

significant drop of influent and effluent water levels was observed over a period of 2 to 3 

hours. 

 

 

5.1.2.4 Permeation Phase 

 

Selection of the appropriate hydraulic gradient is of great importance in 

determining the suitability of flow rate so that no cracks or channels develop through the 

specimen during the experiment.   Variation of the measured coefficient of hydraulic 

conductivity with hydraulic gradients in excess of 100 was found to be insignificant for 

clay by Shackelford et al. (2000).  Hydraulic gradients in the range of 25 to 100 had also 

been used by many researchers (Boynton and Daniel, 1985; Jo et al., 2001; Stern and 

Shackelford, 1998; Shackelford and Redmond, 1995; Lin and Benson, 2000;) for clay 

and sand mix samples.  Higher hydraulic gradients in the range of 100 to 600 have also 

been used for measuring hydraulic conductivity of the clay component of geosynthetic 

liners (Day and Daniel, 1985; Fernandez and Quigley, 1985; Shackelford, 1994; Petrov et 

al., 1997; Petrov and Rowe, 1997; Ruhl and Daniel, 1997; Daniel, 1993).  Rad et al., 

(1994) used hydraulic gradients as high as 2800 and found that the hydraulic conductivity 

of GCL was not affected when water is used as permeant.  In order to investigate the 

effects of hydraulic conductivity on bentonite samples, various hydraulic gradients from 

250 to 3500 were used in this research study with various inorganic solutions as 

permeants.   The results are presented later. 

The effluent cell pressure was reduced from its applied backpressure of 415 kPa 

(60 psi) during saturation to the required pressure level to develop the pre-calculated 
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hydraulic gradients.  Since the hydraulic gradient also depends on the difference in levels 

between influent and effluent in addition to the applied regulated pressure, the fluctuation 

of the actual hydraulic gradient has been accounted for in the calculations.  The constant 

pressure difference of 20 kPa (3.0 psi) between influent and permeameter cell was 

maintained until the completion of the experiment in order to avoid piping and specimen 

collapse.   

 

 

5.1.2.5 Termination Criteria 

 

Since the test set-up represents falling head conditions with increasing tailwater 

elevation, Eq. 5.5 is again used here to calculate the coefficient of permeability, k.  

Permeation through the bentonite specimen was continued until at least four consecutive 

values of hydraulic conductivity were obtained over an interval of time (24-hour) in 

which:  (1) the ratio of outflow to inflow rate is between 0.75 and 1.25, and (2) the values 

of hydraulic conductivity (coefficient of permeability) are steady within ±50% of each 

other. 

Besides the above standard criteria for termination of permeation in permeability 

tests, electrical conductivity of the effluent was measured until its value exceeded 90% of 

the influent before termination.   This is one way of ensuring that a chemical steady state 

has been reached before the test is stopped.  The coefficient of permeability, and the pH 

and electrical conductivity of the effluent were plotted with respect to the pore volume of 

the specimen.  A pore volume is defined as the volume of void space in the permeated 

medium.   In these experiments, it represents the total volume of voids available for the 

leachate to flow through the specimen.  The pore volume, Vp, is calculated from the 

following Equation: 

    
w

s
cp

W
wV

γ
=              (5.2) 

where wc is the sample’s water content at the end of the test, Ws  is the weight of the dry 

sample, and γw  is the unit weight of water.   In order to allow interactions between 
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permeant and porous medium to take place, at least one pore volume should be allowed 

to pass through (Joshi et al., 1994). 

Termination of the permeability test was carried out by gradually and 

simultaneously lowering the applied air pressure in the influent, effluent and 

permeameter cell to zero.  Cell pressure was always kept higher than chamber pressure so 

that the confining rubber membrane does not separate from the specimen surface.  Water 

was then forced out of the cell by slightly increasing the confining pressure through the 

base opening valve. 

After achieving the termination criteria, the specimens were carefully taken out of 

the permeameter in such a way so as to preserve their structural integrity for further 

determination of void ratio, physical shape, and size.    

 

 

5.1.3 Rigid Wall Permeability 

 

Rigid wall permeability experiments were carried out using the diffusion cells 

described in Chapter 4.   The sample preparation was the same as for the diffusion tests, 

which are described in Chapter 6.   Like flexible wall permeability, the effluent 

(tailwater) level increases with time during the tests and the modified ASTM equation is 

used in the calculation (equation 5.1).  A schematic diagram is shown in figure 5.5 to 

describe all the terms of equation (5.1).  

 

 

5.1.3.1 Sample Preparation 

 

Sample preparation steps are the same as those of diffusion tests as described in 

Chapter 6.  After accomplishing a pre-determined thickness of the clay sample due to 

consolidation, the water from the effluent tube and influent permeameter cell is replaced 

with deionized water or required permeants.   The piston inside the permeameter used 

during consolidation was kept during the permeability test in order to maintain a constant 
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Figure 5.5  Schematic Diagram of Rigid Wall Permeameter Set-up 
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5.1.3.2 Permeation Phase 
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effluent can be collected without spilling from the pipette within a reasonable time 

interval.   

 Termination criteria for the rigid wall permeability are the same as those for flexible 

wall, except that the test needs to be interrupted should it be necessary to replenish the 

influent cell before chemical and steady-state flow are achieved.  The effluent sample is 

collected from the pipette at any desired time interval for further analysis for chemical 

equilibrium in terms of electrical conductivity and pH.  The collected sample needs to be 

diluted for chemical analysis if the amount of effluent collected is insufficient due to slow 

permeation through bentonite samples.  

 

 

5.1.4 Factors Affecting Hydraulic Conductivity 

 

Hydraulic conductivity of sodium montmorillonite has been found to be the 

lowest among most of the clays followed by calcium montmorillonite or other divalent 

cation montmorillonites as investigated by many researchers (Benson et al., 1994; 

Mitchell, 1976; Lambe, 1953).  The various factors that are investigated in this research 

work are permeant chemical composition, void ratio, hydraulic gradient, first wetting 

liquid, and boundary conditions. 

 

 

5.1.4.1 Permeant Chemical Composition 

 

The permeant chemical solution is one of the most important factors affecting 

permeability of bentonite due to its interaction with the negatively charged clay mineral 

surfaces, which is responsible for the diffuse double layer variation of bentonite particles.  

Table 5.1 shows the synthetic chemical solutions with their molarity used in the hydraulic 

conductivity experiments using flexible wall permeameters.  Tests K-1 to K-8 were 

carried out using single salt solutions while K-9 to K-14 were conducted using multiple 

solutions in a sequential permeation fashion.  Permeability test results for single salt 
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solutions are shown in figure 5.6 and 5.7 as a function of duration and pore volume, 

respectively. 

 

Table 5.1  Chemical Solutions Used in Hydraulic Conductivity Using Flexible Wall 
Permeameter 

 
Test number Pre-hydration 1st solution 2nd solution 3rd solution 

K-1 DI water 1M CaCl2 - - 

K-2 DI water 1M MgCl2 - - 

K-3 DI water 1M KCl -  

K-4 DI water 1M NaCl - - 

K-5 DI water All salts  

(1M each) 

- - 

K-6 DI water All salts  

(0.1M each) 

- - 

K-7 DI water All salts  

(0.01M 

each) 

- - 

K-8 DI water 5M CaCl2 - - 

K-9 1M CaCl2 1M CaCl2 1M NaCl - 

K-10 1M NaCl 1M NaCl 1M CaCl2 - 

K-11 DI water DI water All salts 

(0.01M each) 

All salts  

(0.1M each) 

K-12 1M MgCl2 1M MgCl2 1M KCl - 

K-13 1M KCl 1M KCl 1M MgCl2 - 

K-14 DI water 1M CaCl2 1M MgCl2 - 

Note: All salts means NaCl, KCl, CaCl2 and MgCl2 

K-11 was also tested for all salts of 1M each solutions following 0.1M solution. 
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Figure 5.6  Permeability vs. Duration for 1M Salt Solutions Using Flexible Wall 

Permeameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  Permeability vs. Pore Volume for 1M Salt Solutions Using Flexible 

Wall Permeameter 
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It can be seen from figures 5.6 and 5.7, that the variation of steady-state 

coefficients of permeability (from 2.4x10-9 cm/s to 3.5x10-9 cm/s) is not that significant 

among those four different salt solutions.  However, an increase in permeability can be 

observed initially for CaCl2, MgCl2 and KCl permeants, which could be the results of 

initial exchange of bentonite surface exchangeable cations.  It can also be found that the 

final stable values of coefficient of permeability are achieved after at most two pore 

volumes of permeants of all four types of salt solutions.    

Permeability test results for experiments K-5, K-6, and K-7 are shown in figures 

5.8 and 5.9 with respect to duration and pore volume, respectively.  Test K-7, where 0.01 

molar of each salt was used as permeant, shows the minimum coefficient of permeability 

(k = 1.0x10-9 cm/s).  The variation of permeability with respect to molar concentration of 

all salts (K-5, K-6, and K-7) permeants is shown in figure 5.8 where a trend of increasing 

permeability is observed with increasing molarity of the permeants.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  Permeability vs. Duration for All Salt Solutions (K-5, K-6, & K-7)  
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volumes of permeant through the specimens, as shown in figure 5.9.   No further 

variation of permeability is observed until termination at around 9 pore volumes, which 

lasted for 35 days (figure 5.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 5.9  Permeability vs. Pore Volume for All Salt Solutions (K-5, K-6, & K-7)  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10  Variation of Permeability with Molarity of Combined Salt Solutions 
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5.1.4.2    Void Ratio 

 

In order to investigate the effect of void ratio of bentonite specimens on 

permeability using various synthetic chemical solutions, rigid wall permeability tests 

were carried out with various amounts of air-dry bentonite clay.  Table 5.2 lists the tests 

that were conducted in the laboratory in order to identify the effects of void ratio on 

CaCl2 and NaCl salt solution permeants.   

 

Table 5.2  Rigid Wall Permeability Tests with Void Ratio Variation 

Permeant 
chemical 
solution 

Test 
No. 

Sample Size 
(diameter x 
thickness) 

Air-dry 
sample 

weight (g) 

Void 
ratio (e) 

Coefficient of 
permeability 

(k, cm/s) 
KD-6 76.2 mm x 7 mm 30 1.98 1.26x10-9 

KD-7 76.2 mm x 7 mm 15 4.97 5.84x10-9 

 

1M CaCl2 

KD-8 76.2 mm x 3 mm 2.5 14.35 6.44x10-8 

KD-5 76.2 mm x 7 mm 30 1.98 6.0x10-10 

KD-9 76.2 mm x 7.84 mm 15 5.69 1.82x10-9 

 

1M NaCl 

KD-10 76.2 mm x 7 mm 7.5 10.94 1.55x10-8 

 

Experimental test results of KD-6, KD-7, and KD-8 for 1M CaCl2 permeant are 

presented in figures 5.11 and 5.12 in terms of duration and pore volume, respectively, 

while those of KD-5, KD-9, and KD-10 for 1M NaCl permeant are presented in figures 

5.13 and 5.14.  It can be seen from figure 5.11 that the permeability increases slightly as 

the test proceeds for 1M CaCl2 permeant, which could be due to the cationic exchange 

process that results in aggregation of clay particles in higher void ratio specimens.  No 

increase in permeability can be observed for more compacted (i.e. lower void ratio) 

specimen shown in figure 5.12.   
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Figure 5.11  Variation of Permeability with Duration of 1M CaCl2 Permeant Used 
in Bentonite of Various Void Ratios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12  Variation of Permeability with Pore Volume of 1M CaCl2 Permeant 
Used in Bentonite of Various Void Ratios 
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Figure 5.13   Variation of Permeability with Duration of 1M NaCl Permeant Used 
in Bentonite of Various Void Ratios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14   Variation of Permeability with Pore Volume of 1M NaCl Permeant 
Used in Bentonite of Various Void Ratios 
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Figure 5.15  Variation of Permeability with Void Ratio for 1M CaCl2 and  
1M NaCl Permeants 

 

  It is clearly revealed from figure 5.15 that the permeability of bentonite clay 

increases with increasing void ratios with both permeants of one molar CaCl2 and NaCl 

salt solutions.  The permeability is higher at higher void ratio simply due to the fact that 

the amount of higher pore volume and space of flow exist in higher void ratio specimens.  

As divalent cations like calcium Ca2+ replace monovalent negatively charged ions like 

sodium Na+, potassium K+,  and others during flow, the diffuse double layer thickness 

between clay platelets is reduced.  Shrinkage of the clay specimens occurs, which causes 

higher flow of solution during permeability as shown in figure 5.15. 
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450 to 3115 were applied for this investigation.  Table 5.3 shows the coefficient of 

permeability with respect to the applied hydraulic gradient on various test specimens.   

    

   Table 5.3  Flexible Wall Permeability Tests with Hydraulic Gradient Variation 

Sample No. & permeant Hydraulic gradient 
(i) 

Coefficient of permeability 
(k, cm/s) 

450 2.52x10-9 

1320 2.27x10-9 

 
K-5 (all salts, 1M each) 

2190 2.22x10-9 

445 2.27x10-9 

1310 1.98x10-9 

 
K-6 (all salts, 0.1M each) 

2165 1.76x10-9 

455 1.21x10-9 

1335 1.09x10-9 

2230 9.93x10-10 

 
K-7 (all salts, 0.01M each)

3115 1.01x10-9 
 

  It can be seen from the permeability results listed in Table 5.3 that the coefficient 

of permeability decreases slightly within the range of 10% to 25% due to 5 to 6 fold 

increase in hydraulic gradient.  The reduction in permeability could be attributed to the 

effect of clay consolidation at higher seepage forces during permeability experiments.   

However, the higher applied hydraulic gradient would cause the permeant to flow at a 

much higher rate, which expedites chemical equilibrium.  Chemical equilibrium is 

required in order to obtain a stable and constant value of k for low permeability clays.     

Although ASTM D 5084 recommends a maximum gradient of 30 for fine grained 

soils of low hydraulic conductivity (k less than 10-7 cm/s), higher hydraulic gradient in 

the range of 50 to 600 are commonly used for measuring hydraulic conductivity of the 

clay component of geosynthetic liners (Daniel, 1994; Pertrov and Rowe, 1997; Petrov 

and Rowe, 1997; Petrov et al., 1997; Ruhl and Daniel, 1997; Lin, 1998).   A high 
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hydraulic gradient of 2800 was used by Rad et al., (1994), for GCL clays using tap water 

permeant where the k value was found to be insensitive to variations in applied gradients. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16  Variation of Permeability with Duration of Flow for K-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17  Variation of Permeability with Pore Volume of Flow for K-5 
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Results of the permeability experiments using flexible wall permeameter for K-5, 

K-6, and K-7 are given in figures 5.16 to 5.21.  DI water was used during pre-hydration 

of the test specimens by applying back pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18  Variation of Permeability with Duration of Flow for K-6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19  Variation of Permeability with Pore Volume of Flow for K-6 
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Figure 5.20  Variation of Permeability with Duration of Flow for K-7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21  Variation of Permeability with Pore Volume of Flow for K-7 
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Figure 5.22  Variation of k with Applied Hydraulic Gradient in Combined Salt Solutions 

 

  The reduction in permeability is found to be minimal even at an applied hydraulic 

gradient of around 2000 for the combined salt permeants, as shown in figure 5.22.   
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CaCl2 hydrated clay (K-9) is found to develop a higher k value compared to DI 

water pre-hydrated clay (K-1), as shown in Table 5.4 and figure 5.23.    Structured 
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forming more dispersed structure of clay particles and thus reducing the flow of chemical 

solutions.  

 

Table 5.4  Flexible Wall Permeability Tests with Various Hydration Solutions 

Permeant Sample No. Pre-hydration Coefficient of 
permeability, 

k (cm/s) 
K-1 DI water 3.23x10-9 1M CaCl2 

K-9 1M CaCl2 5.93x10-9 

K-4 DI water 3.22x10-9 1M NaCl 

K-10 1M NaCl 1.43x10-9 

K-3 DI water 3.55x10-9 1M KCl 

K-13 1M KCl 1.55x10-9 

K-2 DI water 2.30x10-9 1M MgCl2 

K-12 1M MgCl2 1.95x10-9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23  Variation of Permeability with Duration of Flow for K-1 & K-9 
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Figure 5.24  Variation of Permeability with Duration of Flow for K-4 & K-10 

 

Permeability test results for 1M NaCl, 1M KCl, and 1M MgCl2 permeants under 

two different hydration conditions are given in figures 5.23 to 5.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25  Variation of Permeability with Duration of Flow for K-3 & K-13 
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Figure 5.26  Variation of Permeability with Duration of Flow for K-2 & K-12 
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It is clearly found from the test results given in Table 5.5 that the ‘k’ values due to 
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clay particles tend to expand as a result of osmosis pressure due to adsorption but are 

restrained due to the boundary surfaces of rigid wall and fixed porous plates on both ends 
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of the specimen.  The sides of clay specimen form a seal against the rigid walls and thus 

prevent development of any side wall leakage, which is quite prevalent in non-expansive 

clay soils.   

 

Table 5.5  Permeability Tests Using Flexible Wall and Rigid Wall Permeameters 

Permeant 
(DI pre-

saturated) 

Sample No. Permeameter 
type 

Coefficient of 
permeability, 

k (cm/s) 
K-11 Flexible wall 7.98x10-10 DI water 

KD-1 Rigid wall 4.96x10-10 

K-1 Flexible wall 3.25x10-9 1M CaCl2 

KD-6 Rigid wall 1.26x10-9 

K-2 Flexible wall 2.33x10-9 1M MgCl2 

KD-4 Rigid wall 7.96x10-10 

K-4 Flexible wall 3.22x10-9 1M NaCl 

KD-5 Rigid wall 5.94x10-10 
 

  In rigid wall permeameters, the void ratio and the physical dimensions of the 

specimens can be maintained constant as the porous plates are restrained at pre-

determined levels, thereby making the permeability calculation less erroneous.    The 

only two disadvantages associated with rigid wall permeameters are that (1) the influent 

cannot be replenished with the same permeant or replaced with other permeants during 

progress of permeability tests without disrupting the flow and (2) the influent cannot be 

collected intermittently for further chemical analysis while the test is in progress. 

  Four pairs of permeability test results as listed in Table 5.5 and are given in 

figures 5.27 to 5.30. 
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Figure 5.27  Comparison of Permeameters for DI Water Permeant (K-11 & KD-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28  Comparison of Permeameters for 1M CaCl2 Permeant (K-1 & KD-6) 
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Figure 5.29  Comparison of Permeameters for 1M MgCl2 Permeant (K-2 & KD-4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30  Comparison of Permeameters for 1M NaCl Permeant (K-4 & KD-5) 
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5.2  Chemical Analysis of Effluent 

 

5.2.1 General 

 

Chemical analysis of effluent after permeation in this section includes 

measurements of pH and electrical conductivity at regular intervals of permeant flow, 

their ionic analysis, and further analysis in terms of solute storage or retention within the 

bentonite specimens.   Chemical equilibrium in terms of electrical conductivity between 

influent and effluent is also used as one of the criteria for termination of hydraulic 

conductivity tests after steady-state permeability is achieved.   

Measurements of pH and electrical conductivity (EC) of influent and effluent 

were carried out in conjunction with flexible-wall as well as rigid wall permeability tests 

at 24-hour intervals, or in shorter intervals when the permeability was found to be high. 

The main goal was to obtain a representative profile of the electrical conductivity of 

chemicals in the leachate as a function of pore volumes of flow until it reaches its 

chemical equilibrium.  During the collection of permeant, the connecting ball valves with 

the buffer cylinders were kept closed while the permeant was diverted through other 

tubes to minimize disturbance to the flexible wall permeability test. 

In order to conduct full cationic chemical analysis of dissolved solids, 2 ml samples 

of permeant were collected and transported to the environmental engineering lab upon 

completion of the collection. To prevent any further chemical reaction in the permeant 

liquids, care was taken to ensure that handling and transportation time was kept to a 

minimum. The solution was preserved by adding 1% of nitric acid (HNO3) and then kept 

in the refrigerator until the chemical analysis was carried out. 

 

 

5.2.2 pH Measurement 

 

Immediately following sample collection, the pH of the non-acidified original 

sample was measured using an Accumet portable (model AP63) pH meter and 
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polymerbody combination pH/ATC Ag/AgCl electrode. The pH meter was calibrated at 

three levels, using three standard color-coded buffer solution of pH 4.00, 7.00 and 10.00. 

As mentioned earlier, DI water was used for pre-hydration and back pressure saturation 

in the flexible wall permeability tests that are listed in Table 5.6.  The figures in 

Appendix A show the variation of pH of the effluent solution with pore volumes passed 

through the bentonite specimen with reference to influent pH values.  It maybe 

highlighted that the pH values are found to be slightly higher at the beginning of the 

experiment, before they gradually reduce to equilibrium values at steady-state conditions.  

These steady state values are higher than the corresponding influent values, except in the 

case of CaCl2 permeants.  In the case of CaCl2, hydroxyl [OH-] ions are retained on the 

clay surfaces during permeability, and therefore the pH of the effluent is reduced.   

 

     Table 5.6 Lists of Flexible Wall Permeability Tests with pH Results 

Test 

number 

Source solution Influent  

pH 

Effluent 

pH range 

Effluent 

Mean pH 

K-1 1M CaCl2 7.4 6.81 – 7.74 7.2 

K-2 1M MgCl2 6.63 6.27 – 7.59 7.09 

K-3 1M KCl 7.1 6.98 – 7.7 7.38 

K-4 1M NaCl 7.35 7.28 – 7.92 7.44 

K-8 5M CaCl2 8.2 7.25 – 8.25 7.74 

 

 

5.2.3 Electrical Conductivity 

 

The electrical conductivity of leachates was measured for the same specimens 

using an Accumet (model AB30) 4-cell conductivity meter and two epoxy body 

electrodes of cell constant 1.0 cm-1 and 10.0 cm-1. These electrodes are capable of 

measuring a wide range of electrical conductivities from 10 to 200,000 microsiemens. 

Whenever a change of electrodes was required to obtain a measurement within a 

particular range, it was necessary to recalibrate it using its own standard solution.  The 
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figures in Appendix A show the variation of EC of the effluent solution with pore 

volumes passed through the bentonite specimen with reference to influent EC values.  

From figures A.1 to A.27 (odd numbers), it can be clearly concluded that the EC values 

reach the influent values at chemical equilibrium after about 3 to 4 pore volumes of flow.   

Chemical retention in the bentonite specimen can therefore be happening within the first 

3 to 4 pore volumes of flow until chemical equilibrium is attained. 

In order to calculate the total chemical retention within the bentonite clay 

specimen during permeability, it can be assumed that the existing chemical elements of 

the bentonite clay mineral have been “flushed” out within the first pore volume of flow 

and the influent chemical elements start to accumulate then, until chemical equilibrium is 

reached.  Integrating the area in between the influent EC line and the best fitted effluent 

EC line from zero pore volume to the pore volume at chemical equilibrium (3 to 4 pore 

volumes), the total retention capacity of the dissolved salt permeant can be calculated.   

 The area under the electrical conductivity (EC) curve (µS/cm. pore volume) 

represents the total amount of solute permeated through the clay specimen.  The area 

under the effluent EC curve within any interval of pore volumes provides the amount of 

dissolved chemical salts permeated through the specimen, while that under influent EC 

represents the amount of chemical salts present in the influent that flows into the clay 

specimen during the same interval of pore volumes.  The difference in areas is the 

amount of chemicals retained within the bentonite clay during permeation of inorganic 

dissolved chemicals. 

Since the testing specimens are saturated with deionized water before the 

chemical solution permeation is carried out, no chemicals are added to test specimens.  

After saturation of the clay specimens, EC is measured for the deionized water in the 

effluent cylinder.  Any value measured is due to the diffusion of chemicals present within 

the specimen during the saturation phase.  The total amount of outfluxed chemicals 

during saturation is to be incorporated in the calculation of actual amounts of chemical 

retained within the specimen during permeability.   In order to obtain a distinct variation 

of effluent EC, permeation through bentonite clay is required to be carried out following 

deionized water pre-hydration and back pressure saturation.  The calculated amount of 
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retained chemicals can be checked against the actual amount retained, which is obtained 

by measuring the dry weight of the specimen after completion of the test. 

An example of the calculation of any particular salt permeant is shown below.  

The influent of the test is one molar CaCl2 solution (test # KD-6) with an electrical 

conductivity of 128,000 µS/cm.  The best fit curve for the effluent EC is obtained using 

any statistical analysis software (‘excel’ worksheet in this study).   A fourth-order 

polynomial equation is generated for the effluent EC curve as shown in figure 5.16, 

which merges with the influent EC line at around 5 pore volumes of flow.   The total 

amount of chemicals present in the effluent, until chemical equilibrium is achieved, is 

calculated by the area under this curve (area ABCD as in figure 5.31) from a pore volume 

of zero to a pore volume of five, as given in the following equation (5.3).  

Area ABDE = 

( )∫∫ +++−+−−=
5

0

334565

0
2500252883.70765.223868.1855822.30951.0 dxxxxxxxydx

          (5.3)  

= 379,340 µS/cm . pore volume 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31  Chemical Retention Measurement for KD-6 
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  The total amount of chemicals present in the influent during the same flow 

volume is the area under the influent EC line from zero to five pore volumes (area 

ACDE).  Therefore, the amount of chemicals influxed into the clay specimen is: 

Area ACDE = 130,000 x 5 = 650,000 µS/cm. pore volume 

The total of chemicals retained within the specimen  

=  Area ACDE – Area ABDE 

=  650,000 - 379,340 µS/cm. pore volume 

 =  270,660 µS/cm. pore volume 

 =  270,660 x 0.66 mg/L x pore volume   [since 1 µS/cm = 0.66 ppm] 

 =  178,635 mg/L x 21.2 ml   [since 1 pore volume for KD-6 = 21.2 ml] 

 =  3,787 mg 

 =  3.78 g 

 

The actual increase in mass recorded for the test specimen after drying in the oven 

at 105ºC for 24 hours was found to be 3.2 g which is 15% smaller than the theoretical 

value, as calculated above from the EC measurements of the effluent and influent 

solutions.  Other values in terms of actual and theoretical chemical retention are given in 

Table 5.7. 

    Table 5.7   Theoretical and Actual Chemical Retention During Permeability 

Test # Influent Size 

Thickness x 

mass 

Void 

ratio 

Calculated 

chemical 

retention (g) 

Actual 

chemical 

retained (g)

KD-4 1M MgCl2 7mm x 30g 1.98 2.0 1.48 

KD-5 1M NaCl 7mm x 30g 1.98 0.8 0.48 

KD-6 1M CaCl2 7mm x 30g 1.98 3.78 3.2 

KD-11 1M KCl 7mm x 30g 1.98 1.51 1.18 

KD-7 1M CaCl2 7mm x 15g 4.96 3.08 2.1 

KD-8 1M CaCl2 3mm x 2.5g 14.35 1.86 1.03 

KD-10 1M NaCl 7mm x 7.5g 10.94 1.12 0.93 
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It can be seen from Table 5.7 that the actual amounts of chemical retention are 

lower than those calculated theoretically from the electrical conductivity plots.  These 

lower values may be attributed to the fact that some loss of clay specimen mass occurs 

due to the dissolution of chemicals present in the clay during saturation.  Also the 

presence of chemical solution, and the precipitation left within the test apparatus after the 

completion of permeability test may contribute to the difference. 

  By comparing the first four tests as listed in Table 5.7 having the same size, mass, 

and void ratio, it is found that the amount of chemical retained in divalent permeants is 

higher than that of monovalent permeants  since the higher valence cations replace the 

lower valence cations on the surface of the clay platelets. 

 

 

5.2.4 Ionic Analysis 

 

All influent and effluent samples were collected in 60 ml polyethylene chemically 

resistant bottles and mixed with 1% nitric acid (0.6 ml) for preservation at 4oC in the 

refrigerator until the actual chemical analyses were done. The acidification is a required 

step in the preservation and chemical analysis of the samples, and does not interfere with 

the accuracy of the measurement in any way. The acidified samples were analyzed for all 

major metal ions, namely sodium (Na+), calcium (Ca++), magnesium (Mg++), and 

potassium (K+). This was done using the “AAnalyst – Atomic Absorption Spectrometer” 

at the environmental engineering lab of the University of South Florida. 

Liquid samples, which were collected and preserved previously during the 

hydraulic conductivity tests at different EC values, were analyzed, and the amounts 

(concentration) of their four major chemical elements were determined.   Test results 

obtained from the permeability tests (Test # K-1, K-2, K-3, and K-4) are given in 

Appendix C.   It is found from the plots, in figures C.1 to C.4 of Appendix C, that most of 

the cation exchange happens until around 2 to 3 pore volumes except in sodium solution 

where no cation exchange is visible, as shown in figure Appendix C.4 (test # K-4).  

Sodium and calcium chemical elements are found to be present within the supply 
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bentonite either in the form of precipitation or exchangeable cations on the clay platelets 

as evidenced from the ionic analysis plots. 
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CHAPTER SIX 
 
 

DIFFUSION IN BENTONITE 
 
 

 
In this chapter, test set-up and experimental procedures of diffusion through 

bentonite is described.  A new test procedure and apparatus for diffusion using parts of a 

rigid wall permeameter is proposed in order to obtain relevant diffusion properties of 

bentonite clay material.  In this study, a number of inorganic chemical permeants were 

used in diffusivity of bentonite at various solid-water conditions (i.e. various void ratios).  

Solutions are collected from outflux tubes connected to the diffusion apparatus at regular 

intervals of time during the progress of diffusion.  Test results of chemical analysis of 

diffusion solutions are also reported in this chapter. 

 

 

6.1  Experimental Methods 

 

A specially fabricated diffusion cell is used for the diffusion experiments, which 

was also used in rigid wall permeability experiments (described in Chapter 5).  

Commercially available deionized water and synthetic inorganic salt solutions of various 

concentrations and combinations were used as permeants for bentonite clay in this 

investigation. 

Apparatus set-up, test sample preparation and procedure, and sample collection 

for chemical analysis are described in this section.  Test results and chemical analysis of 

diffused collected samples are discussed in section 6.2.  In order to find the diffusivity of 

various chemical elements in bentonite clay, a number of dissolved salts solutions, used 
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as permeants, were placed in the highly concentrated source chamber.  Bentonite 

specimens with various thicknesses were prepared to provide different void ratios. 

Void ratios of the specimens were varied by taking different amounts of air dry 

samples for the same physical dimension of the specimens.  The thickness of the 

specimens was kept constant at 3 mm while the weights of air-dried bentonite powder 

were varied from 2.5 g to 7.5 g.   Highly concentrated dissolved salt solutions of one 

molar and above were prepared and applied as a single salt or a combination of various 

salts in the source chamber.   

 

 

6.1.1 Test Set-up 

 

  The full description of the test apparatus was given in chapter 4.   Diffusion of the 

highly concentrated solutions through clay was carried out by keeping the liquid levels of 

both source chamber and receiving tube the same.   A schematic diagram in figure 6.1 

shows the relevant terms necessary to investigate the diffusion characteristics of 

bentonite clay materials.  The relevant terms are:   

Lsample = length of the sample 

Asample = cross-sectional area of the sample 

as =   area of the source chamber which is equal to the cross-sectional area 

of the sample 

ar = area of the receptor tube 

A stainless steel ball valve connected at the bottom of the receptor tube is used to 

separate the solution in the tube from that in the source chamber and bottom porous 

stone.  The valve is to be closed while collecting the out-fluxed solution from the receptor 

tube so that no disturbance or hydraulic gradient is created within the diffusion cell.   The 

connection between the receptor and ball valve is required to be leak proof so that no out-

fluxed solution is lost.  The grooves on the bottom plate of the diffusion cell need to be 

cleaned periodically from any deposited solutes by using pressurized tap water and a 

cleanser.   The plexiglass diffusion cylinder, which is placed in between top and bottom 
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plates, is to be tightened firmly with the bottom plate so that diffusion is prevented 

through the perimeter of the bottom porous stone.  Sufficient vacuum grease is applied on 

both ends of the plexiglass cylinder in order to prevent any leakage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  Schematic Diagram of Diffusion Cell Set-up 
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Diffusion Cell

Source 
Chamber

Pressure Line 
(closed) Receptor

Lsample

Asample

ar

as

Porous 
stones

Solution 
height

Diffusion Cell

Source 
Chamber

Pressure Line 
(closed) Receptor

Lsample

Asample

ar

as

Porous 
stones

Solution 
height



www.manaraa.com

137 

amount of silicon vacuum grease is also applied along the perimeter edge of the porous 

stones to create frictionless joints so that the stones can be pushed into the top of the 

specimens with ease.   No filter paper is placed in between the specimen and porous 

stones to reduce any reaction which might occur after a certain period of time between 

the constituents of the paper, chemical solutions, and clay minerals during the process of 

diffusion.  Choosing the right size O-ring is essential so that the porous stone assembly 

does not fit too tightly into the chamber, which might cause it to crack and eventually 

break while pushing the porous stone the internal piston. 

A full diffusion set-up picture is given in figure 6.2.  A highly concentrated solute 

flows from the source chamber towards the receptor tube with time due to the 

concentration gradient.     

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 6.2  Diffusion Set-up 
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6.1.2 Sample Preparation and Procedure 
 

The sample preparation procedure and test sequence for diffusion experiments 

were followed strictly in order to obtain reproducible and reliable test results, and 

minimize experimental errors due to leakage, sample non-uniformity, sample loss, and 

disturbance. 

 

 

6.1.2.1 Sample Preparation 

 

A pre-determined amount of air-dried bentonite powder (2.5 g to 7.5 g) is taken in 

a plastic bowl of sufficient capacity (0.5 liter to 1.0 liter.  DI water is slowly added to the 

bentonite powder and then mixed thoroughly using a high speed mechanical mixer until a 

slurry consistency bentonite-water suspension is obtained.  The bentonite-water slurry is 

then kept in the bowl with a cover for at least 24 hours so that the water molecules adsorb 

uniformly on the clay platelets.   

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3  Components of Diffusion Cell 
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After the 24 hour soaking period, the mixer is again used to disintegrate any 

lumped or aggregated clay particles so that a uniform slurry suspension is achieved 

before being poured inside the diffusion cell.   Constant care is to be taken during the 

mixing so that no material is lost or left adhering to the parts of the mixer or mixing 

bowl.   All the components of the diffusion cell and its supporting accessories are shown 

in figure 6.3. 

The following steps are carried out in sequence during preparation of clay 

specimens in the diffusion cell. 

Step 1:  The grooves of the base plate, connecting fittings of the diffusion cell, 

and receptor tube are cleaned thoroughly with a brush, pressurized tap water and 

cloth/tissue paper so that no deposited salt or other impurities are left behind. 

Step 2:  Sufficient silicon vacuum grease is applied on the perimeter edges of a 

porous stone and then positioned inside one of the ends of the plexiglass cylinder, flush 

with the edge of the cylinder. 

Step 3:  Additional vacuum grease is applied on the both edges of the cylinder.  

The end with the bottom porous stone from step 2 is then placed on the O-ring seated on 

the based plate of the diffusion cell. 

Step 4:  The top support (ring frame) is placed on the top end of the cylinder and 

tightened with screws so that no leakage is allowed through the bottom connection of the 

cylinder and the plate.   

Step 5:  The prepared bentonite slurry is then poured into the plexiglass cylinder 

(already fitted with the bottom porous stone) in such a way that no bentonite clay is left 

on the bowl surface or the spoon. 

Step 6:  After applying vacuum grease along the sides of the O-ring placed on its 

perimeter edge, the top porous stone is carefully placed on the top side of the cylinder 

and then pushed into the cylinder with the help of a smaller diameter cylinder until the 

porous stone touches the top of the bentonite slurry.  The porous stone is pressed down 

inside the cylinder in such a manner that it remains horizontal all the way to the top of the 

slurry surface.  Any inclination in placing the porous stone would allow the bentonite 

slurry to squeeze out during the subsequent consolidation process.  Erroneous results 
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would be encountered should there be any gap along the perimeter joint of the porous 

stone and cylinder. 

Step 7:   After leaving the piston cylinder inside the diffusion cylinder, the top 

plate of the diffusion cell is placed on the piston cylinder.  Three wing nuts are then used 

to push the top plate down with the piston, which eventually presses the top porous stone 

down and squeezes the slurry bentonite sample.  The three nuts are to be turned slowly 

and uniformly in order to apply a uniform pressure on the porous stone.  During this 

process of consolidation, the receptor ball valve is kept open so as to create a double 

drainage flow path.   

Step 8:  Water accumulated within the receptor tube due to consolidation of the 

slurry is flushed out.  The thickness of the specimen is calculated from the height of the 

piston when the top plate touches the top support ring after pressing the piston down by 

turning the screws.  The pistons are fabricated in such a length that produces the required 

thickness of the bentonite specimen at which the diffusion test is performed.   

Step 9:  The water as well as some suspension clay particles that are squeezed out 

through the porous stones from top and bottom of the specimen and are accumulated 

within cylinder and receptor respectively, are collected and dried in an oven overnight.  

The dried weight of the clay is deducted from the initial amount of the bentonite in order 

to calculate the final amount of bentonite used in the diffusion experiments. 

Step 10:  A synthetic inorganic salt solution is prepared by dissolving the required 

amount of salt in DI water.  The concentrated salt solution (about 300 ml to 400 ml) is 

poured into the source chamber.  The top plate is then placed on top of the source 

chamber and is tightened with the wing nuts so that no opening in the connection is 

available for air-flow.    

Step 11:  DI water is poured into the receptor tube up to the same level as the 

source solution in the chamber.  A cap is then placed on top of the receptor tube to 

prevent any air circulation or evaporation of the receptor solution during the process of 

diffusion. 
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Various important steps of the above procedure are shown in figure 6.4.  The 

prepared test assembly with specimen and synthetic solution is then kept in an 

undisturbed place free of air flow/circulation or temperature variation.   

 

 

 

 

 

 

 (a) Step 2   (b) Step 3   (c) Step 4 

 

 

 

 

 

 

   (d) Step 5-8   (e) Step 9-11 

 

Figure 6.4 Sample Preparation for Diffusion Test 

 

 

6.1.3 Synthetic Inorganic Chemicals 

 

Deionized water with less than 5 ppm dissolved ions and four different salt 

solutions (NaCl, KCl, CaCl2 and MgCl2) of various concentrations and combinations as 

shown in Table 6.1 were used in diffusion tests as the source solution.  All the salts are 

Fisher Scientific Lab certified brands and were used according to their formula weights 

for preparing synthetic inorganic solutions.  NaCl, KCl, and CaCl2 are anhydrous 

granular salts while MgCl2 is a hexahydrate crystalline salt having the chemical formula 
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MgCl2.6H2O.  Deionized water commercially available in one-gallon plastic bottles was 

used as a solvent for those salt solutions. 

  The salt solutions have been chosen to investigate the effects of various 

concentrations, cation size, and valence on the diffusion characteristics of bentonite clay.   

Concentrations of the electrolyte solutions were varied from 1M to 5M and were 

prepared by dissolving crystalline/granular salts with DI water.   In order to determine the 

adsorption capacity and replaceabilty of cations on negatively charged clay mineral 

surfaces, NaCl and KCl were chosen to study the effects of monovalent cations and 

hydrated ion size (Na+ and K+ have different hydrated radius) while CaCl2 and MgCl2 

were chosen to investigate the behavior of divalent cations (Ca2+ and Mg2+) that are 

commonly found in natural aqueous systems and at higher concentrations in polluted 

groundwater and landfill leachate. 

 

 

6.1.4 Sample Collection for Chemical Analysis 

 

  Measurements of pH and electrical conductivity (EC) of outfluxed diffusant were 

taken at 48-hour intervals, or shorter intervals when the diffusion rate was found to be 

high. The main goal was to obtain a representative profile of the flow of chemicals 

through the bentonite clay as a function of time.   In order to conduct EC and pH 

measurements, as well as a full cationic chemical analysis of diffusant, DI water was 

added to the receptor solution up to a level of 25 ml.  By using a long slender pipette and 

a handheld rubber suction pump, the diffusant was collected from the receptor tube for 

chemical analysis which includes pH and EC measurements and ionic analysis.   

 

 

6.2  Chemical Analysis 

 

Chemical analyses in terms of pH, electrical conductivity (EC) and ionic analysis 

were carried out on the diffusant solution collected from receptor tube.  In addition, pH 
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and EC measurement of source solutions were carried out intermittently in order to verify 

the uniformity of influx concentration during the whole process of diffusion.   Table 6.1 

lists the diffusion tests carried out with synthetic inorganic salt solutions of different 

molarities.  Void ratios of the specimens were varied according to their size and the 

amount of air-dry bentonite in the specimen.   

 

     Table 6.1 Lists of Diffusion Samples with Source Solutions 

Test 

number 

Source solution Specimen size 

Diameter x thickness 

Void ratio 

D-5 1M NaCl 76.2 mm x 7.84 mm 5.69 

D-6 2M CaCl2 76.2 mm x 8 mm 9.23 

D-8 2M MgCl2 76.2 mm x 3 mm 14.35 

D-9 2M KCl 76.2 mm x 3 mm 14.35 

D-10 2M NaCl 76.2 mm x 3 mm 14.35 

D-11 2M CaCl2 76.2 mm x 3 mm 14.35 

D-12 5M CaCl2 76.2 mm x 3 mm 14.35 

D-13 5M CaCl2 76.2 mm x 3 mm 4.11 

D-14 5M NaCl 76.2 mm x 3 mm 14.35 

D-16 5M NaCl 76.2 mm x 3 mm 6.67 

D-17 All salts (1M each) 76.2 mm x 3 mm 14.35 

 

 

6.2.1 pH Measurement 

 

Immediately following sample collection, the pH of the non-acidified original 

sample was measured using an Accumet portable (model AP63) pH meter and 

polymerbody combination pH/ATC Ag/AgCl electrode. The pH meter was calibrated at 

three levels, using three standard color-coded buffer solutions of pH 4.00, 7.00 and 10.00.  

During the measurement, the solution must be stirred constantly with the pH probe for at 

least a minute in order to obtain a stable reading.  In each subsequent use of the pH probe, 
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it is important to wash the probe thoroughly using DI water in order to prevent 

contamination with previously measured solutions.   

The test results for the diffusants collected from the receptor tube are given in a 

series of figures in appendix B.  The results are also summarized in Table 6.2, where the 

range of pH and their mean pH along with the specimens’ void ratios are highlighted.  In 

order to compare the variation of pH values with respect to source solutions, tests results 

are grouped into three categories as follows: 

Group # 1 – Source solution CaCl2 of various molarities (D-6, D-11, D-12 and    

D-13) 

Group # 2 – Source solution NaCl of various molarities (D-5, D-10, D-14 and      

D-16)  

Group # 3 – Source solution of two molars of various salt solutions for same void 

ratio (e = 14.25) specimens (D-8, D-9, D-10, and D-11).   

Combined test results for group 1, 2, and 3 are given in figures 6.5, 6.6, and 6.7 

respectively.  The values of pH were found to be widely scattered within a range of 5.3 to 

10.95, as given in Table 6.2.   

It can be seen from figure 6.5 of group # 1 tests, where CaCl2 solutions of various 

concentrations were used as the source, that pH values of out-fluxed diffusants were 

found to be slightly higher than those of group # 2 (figure 6.6), where NaCl solutions 

were used as a source.  It can be highlighted that the pH values of CaCl2 source solutions 

were found to be between 10.0 and 10.5, while those of NaCl solutions were in the range 

of 7.1 to 7.5.  Therefore, it may be concluded that the pH value decreases in the case of 

CaCl2 source solutions due to retention of hydroxyl ions [OH-] within the bentonite clay 

during diffusion.  In the case of NaCl source solutions, an increase in pH values can be 

observed, which could be due to the supply of hydroxyl ions [OH-] from the bentonite 

clay during the process of diffusion.   

It can be observed from figure 6.7 and Table 6.2 that the pH values for KCl and 

MgCl2 source solutions are lower than those of NaCl and CaCl2 source solutions, which 

could be due to the fact that original source pH for KCl and MgCl2 are 6.55 and 6.65 

respectively, which are lower than those of NaCl and CaCl2. 
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     Table 6.2 Lists of Diffusion Tests with Out-Fluxed pH Results 

Test 

number 

Source solution Void ratio pH range Mean pH 

D-5 1M NaCl 5.69 7.33 – 8.86 7.95 

D-6 2M CaCl2 9.23 5.85 – 10.95 9.18 

D-8 2M MgCl2 14.35 6.32 – 8.87 7.35 

D-9 2M KCl 14.35 6.49 – 9.2 7.64 

D-10 2M NaCl 14.35 6.6 – 10.67 8.4 

D-11 2M CaCl2 14.35 5.3 – 9.74 8.36 

D-12 5M CaCl2 14.35 5.74 – 9.8 8.54 

D-13 5M CaCl2 4.11 6.62 – 9.35 8.08 

D-14 5M NaCl 14.35 7.24 – 8.64 7.98 

D-16 5M NaCl 6.67 6.75 – 9.2 8.21 

D-17 All salts (1M each) 14.35 7.12 – 8.9 7.68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5  Variation of pH for Group #1 Diffusion Tests (D-6, D-11, D-12, and D-13) 
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Figure 6.6  Variation of pH for Group #2 Diffusion Tests (D-5, D-10, D-14, and D-16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7  Variation of pH for Group #3 Diffusion Tests (D-8, D-9, D-10, and D-11) 
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6.2.2 Electrical Conductivity 

 

The electrical conductivity of leachates was measured for the same specimens 

using an Accumet (model AB30) 4-cell conductivity meter and two epoxy body 

electrodes of cell constant 1.0 cm-1 and 10.0 cm-1. These electrodes are capable of 

measuring a wide range of electrical conductivity from 10 to 200,000 microsiemens. 

Whenever a change of electrodes was required to obtain a measurement within a 

particular range, it was necessary to recalibrate it using its own standard known solution 

before using. 

Test results of electrical conductivity measurements for all the diffusion 

experiments are listed in Table 6.1 and are presented in appendix B.  Cumulative 

diffusion time in days, shown on the horizontal axes of the figures in appendix B, 

represents the elapsed time from the beginning of the diffusion test.  As the receptor tube 

is replenished with DI water after each collection of diffusant solution, electrical 

conductivity values presented in the “a” series of figures in appendix B measure the EC 

for the duration between two consecutive sample collections.  In the “b” series of the 

figures in appendix B, the cumulative electrical conductivity values, which are calculated 

from the raw data of the “a” series, are plotted on the vertical axis.  A diffusion test is 

considered to have reached at steady-state condition when the curve of cumulative EC 

versus cumulative diffusion time starts to take the shape of a straight line.  After 

achieving a constant variation of cumulative EC with respect to elapsed diffusion time, as 

shown by the dotted straight lines in figures “b” in appendix B, diffusion tests were 

terminated and the bentonite clay specimens were collected and dried in the oven for 

further analysis. 

Three groups of tests, as outlined in section 6.2.1, were also considered for 

comparison of out-fluxed cumulative electrical conductivity with respect to diffusion 

duration.  The results are tabulated in Table 6.3, along with their duration intercept 

known as the “Lag Time”, and their steady-state equation.  Combined test results of EC 

for groups 1, 2, and 3 are also given in figures 6.8, 6.9, and 6.10 respectively.   
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     Table 6.3  Comparison of Diffusion Tests with ‘Lag Time’ and Steady-State Equation 

Group 

# 

Test 

number 

Source 

solution 

Void 

ratio 

Lag Time Steady-state equation 

D-6 2M CaCl2 9.23 39 Y= 382.82X - 14913 

D-11 2M CaCl2 14.35 25 Y = 847.67X - 20905 

D-12 5M CaCl2 14.35 8 Y = 1664.1X - 13584 

 

 

1 

D-13 5M CaCl2 4.11 54 Y = 756.82X – 40684 

D-5 1M NaCl 5.69 16.5 Y = 59X – 984 

D-10 2M NaCl 14.35 40 Y = 453.78X – 17907 

D-14 5M NaCl 14.35 14 Y = 1116.7X – 15682 

 

 

2 

D-16 5M NaCl 6.67 19 Y = 677.77X – 13165 

D-8 2M MgCl2 14.35 45 Y = 566.66X – 25387 

D-9 2M KCl 14.35 40 Y = 359.66X – 14468 

D-10 2M NaCl 14.35 40 Y = 453.78X – 17907 

 

 

3 

D-11 2M CaCl2 14.35 25 Y = 847.67X - 20905 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8  Cumulative EC for Group #1 Diffusion Tests (D-6, D-11, D-12, and D-13) 
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Figure 6.9  Cumulative EC for Group #2 Diffusion Tests (D-5, D-10, D-14, and D-16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10  Cumulative EC for Group #3 Diffusion Tests (D-8, D-9, D-10, and D-11) 
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  It can be seen from figure 6.8 that the fastest diffusion rate and shorter lag time 

were achieved for test D-12 where the bentonite specimen had higher void ratio (e = 

14.35) with a higher concentrated source solution of 5 molars.  For consolidated 

bentonite clays of lower void ratios, lower rates of diffusion and longer lag times were 

found, even at higher concentrated source solutions, as shown in figure 6.8. 

  The same trend can also be observed for NaCl source solutions used in diffusion 

through bentonite clay specimens, as shown in figure 6.9.   The rate of diffusion of one 

molar NaCl solution through bentonite clay of void ratio 5.69 was so slow that it was 

terminated after 45 days of diffusion.  By comparing figures 6.8 and 6.9, it can be 

concluded that the rate of diffusion is much faster in CaCl2 solutions than in NaCl 

solutions. 

  In group # 3 diffusion tests, various salt solutions of the same molarity (2M) were 

used as source solutions for bentonite clay specimens of the same void ratio (e = 14.35). 

The results are given in figure 6.10.  It can be clearly seen from figure 6.10 that the rate 

of diffusion is much higher and lag time is much shorter for CaCl2 solution in comparison 

with other source solutions. 

 

 

6.2.3 Ionic Analysis 

 

All diffusant samples were collected in 2 ml polyethylene chemically resistant 

bottles and mixed with 1% nitric acid for preservation at 4oC in the refrigerator until the 

actual chemical analyses were done. The acidification is a required step in the 

preservation and chemical analysis of the samples, and does not interfere with the 

accuracy of the measurement in any way. The acidified samples were analyzed for all 

the relevant cations, namely sodium (Na+), calcium (Ca2+), magnesium (Mg2+), and 

potassium (K+).  This was done in the USF environmental lab using the “Optical 

Emission Spectrometer” which is known to be a highly accurate method for that purpose. 
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Table 6.4  Ionic Analysis of Diffusant of Two Molar Solutions Through Bentonite 

Test # Time lapsed 
(days) 

Na+ 
(mg/l) 

K+ 
(mg/l) 

Mg++ 
(mg/l) 

Ca++ 
(mg/l) 

Total 
(mg/l) 

1.05 9 5.5 3 3.3 20.8 
9.09 0.6 0.7 0 0.5 1.8 
13.16 3.3 1.1 11.1 1.2 16.7 
16.1 5.8 1.1 20.4 1.6 28.9 
22.92 3.5 0.5 12.5 0.8 17.3 
29.99 2 6.7 49 1.6 59.3 
42.15 2.2 0.4 300 2 304.6 
53.31 2.3 14.8 351 3 371.1 

 
 
D-8 
2M MgCl2 

71.35 4 2.9 608.8 3.8 619.5 
1.04 1.1 8.5 4.2 7.1 20.9 
2.3 0.3 8.7 3.4 2.7 15.1 
16.1 7.2 10 0.3 0.5 18 
18.96 2.2 36.5 0.4 1.1 40.2 
22.92 1.8 58.4 0.5 0.7 61.4 
29.99 1.3 163.4 0.3 0.9 165.9 
39.91 1.8 212.3 0.5 1.3 215.9 

 
 
 
D-9 
2M KCl 

53.31 1.8 244.9 1.5 3.3 251.5 
1.03 7.2 4.5 2.2 2.2 16.1 
2.3 4.6 5 1.6 1.5 12.7 
5.14 11 3.2 0.4 0.3 14.9 
13.16 45 2.2 2.1 1.6 50.9 
16.1 99.3 1.03 0.2 0.3 100.8 
22.92 90 1.4 0.2 1 92.6 
33.53 108 1 0.3 1.4 110.7 

 
 
 
D-10 
2M NaCl 

78.08 2666 2 0.4 5.8 2674.2 
5.31 4.1 3.6 0.5 16.5 24.7 
9.38 11 19.4 0.9 0.9 32.2 
18.44 7.5 10.4 5.1 108 131 

 
D-11 
2M CaCl2 

29.27 22.9 45.3 1 643.6 712.8 
 

Solutions, which were collected and preserved previously during the diffusion 

tests at different EC values, were analyzed, and the amounts (concentrations) of their 

major four chemical elements were determined.   Table 6.4 shows the test results of ionic 

analysis conducted on various diffusants collected from receptor tubes.  By comparing 

the diffusants of 2M MgCl2 and 2M CaCl2 in tests # D-8 and D-11, respectively, it is 

found that calcium divalent cations replace more monovalent cations from the negatively 

charged surface of clay platelets than magnesium divalent cations.  This may be 
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attributed to the larger hydrated radius of magnesium cations compared to calcium.    

Small amounts of divalent cations were detected, even when using monovalent 

diffusants, as shown in test # D-9 and D-10 in Table 6.4.  This may be due to the 

presence of loose precipitated divalent cations mixed in the bentonite powder.  However, 

no significant traces of cations are encountered at the steady-state condition other than 

those of the diffusant solutions. 
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CHAPTER SEVEN 
 
 
 

TRANSPORT THEORY AND ANALYSIS OF DIFFUSION  
IN BENTONITE CLAY 

 
 
 
7.1  Fluid Transport Mechanisms 

 

There are four different types of flow which occur through soils, namely, fluids, 

electricity, chemicals, and heat flow.  These flows occur due to the variation in their 

respective potentials at various locations.  In addition, coupled flow is defined as the flow 

of one type due to the flow potential of another type.  Water flow, chemical flow and 

coupled hydraulic-chemical flow are investigated in this research. 

Transport of dissolved chemicals or solutes in the subsurface is generally 

considered to be the result of three important processes: advection, dispersion, and 

diffusion.  The following sections are designated to describe the advection and diffusion 

flow theories and their related characteristics. 

 

 

7.1.1 Advection Flow 

 

Advection is defined as a movement (flow) of fluid (or leachate) through a porous 

medium due to a potential (hydraulic gradient) as shown in figure 7.1.  Advection occurs 

in the pore fluid where the flowing fluid is responsible for carrying chemicals in the form 

of dissolved or suspended particles. 
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Figure 7.1 Advection of Solute Transport  

 

The mathematical representation of 3-D advection is shown in figure 7.2, where 

dh is the change of hydraulic head across an infinitesimal distance dx, dy, or dz.   The 

terms q and k with subscripts in their respective directions are known as Darcy flux 

[LT-1] and hydraulic conductivity or coefficient of permeability [LT-1], respectively.   The 

chemical flux, Ja   [MT-1L-2] through a unit area due to a hydraulic influx of a solution of 

concentration C [ML-3] can be written as (Malusis, 2001; Mitchell, 1993): 

     CqJ a =              (7.1) 

The mass of chemical solute accumulated by advection during any time interval t1 

to t2 can be calculated by integrating equation (7.1) as follows: 

   ∫∫ ⋅⋅=⋅= 2

1

2

1

)(
t

t

t

t aa dtqtCdtJM           (7.2) 

In equation (7.2), C(t) is the concentration of the chemical during the time 

interval, and q is the Darcy flux defined as k(dh/dx). 
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7.1.2 Diffusion Flow 

 

Transport of chemicals through a porous medium by dispersion consists of two 

processes, namely, molecular diffusion (commonly known as diffusion) and mechanical 

(or hydrodynamic) mixing.  Diffusion is defined as the process whereby ionic or 

molecular constituents are transported under the influence of their kinetic activity in the 

direction of their concentration gradient as shown by the schematic diagram in figure 7.3.  

The solute (chemicals) still flows through the porous medium even when the hydraulic 

gradient is zero, as shown in figure 7.3.   

Dissolved chemicals flow from the high concentration location to the low 

concentration location.  The amount of mass flux, Jd [MT-1L-2], depends on its chemical 

concentration gradient.  Figure 7.3 shows the variation of concentration gradient (also 

known as chemical potential gradient) where it changes with time and eventually reaches 

a constant at steady state condition.  No concentration gradient, and accordingly no net 

solute flow, exists when the concentration on both sides of the medium is the same.  

Diffusion flux, Jd, as given by the Fick’s first law for steady state condition, is written in 

equation 7.3 (Mitchell, 1993; Malusis, 2001, 2004; Shackelford, 1993, 1996, 2001). 

    
dx
dCDJ od −=              (7.3) 

Do [L2T-1] is known as the coefficient of diffusion in “free solution” (normally 

when the chemical is in infinite dilution).  Several investigators have studied the 

influential factors controlling the value of Do as expressed in equation (7.4) (Shackelford 

and Daniel, 1991; Robinson and Stokes, 1959; Beek, et al. 1999) 

    ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅⋅
=

rz
TfDo η

            (7.4) 

where |z| is the absolute value of the ionic valence, η is the absolute viscosity of the 

solution, r is the molecular or hydrated ionic radius, and T is the absolute temperature of 

the solution. 
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Figure 7.3  Molecular Diffusion of Solute 

   

In order to incorporate Fick’s first law in a soil medium, modifications to equation 

(7.3) have been introduced by many researchers, (e.g., Cheung and Gray, 1989; Eriksen, 

et al. 1999; Foose, 2002; Shackelford and Lee, 2003; Malusis and Shackelford, 2004).  

Chemical diffusion in soils is much slower than in the free solution because of the effect 

of porosity, especially in fine grained soils where the permeability is lower and where a 

tortuous pore channels exist.  Further reduction of diffusivity happens in clays since the 

particles are adsorptive due to the negatively charged particle surface.  Factors affecting 

the diffusivity of chemical solutes through a soil mass can be summarized as follows: 

 

(a) Cross-sectional area of flow within the soil mass:  The availability of the 

flow path depends on the porosity of the soil and the degree of saturation.  

Diffusivity is directly proportional to the values of porosity (n) and degree 

of saturation (Sr).  The maximum flux for liquid phase diffusion occurs 

when the soil is fully saturated (degree of saturation, Sr = 1.0).   

 

(b) Flow path tortuosity:  Tortuosity (τ) of a soil mass, which depends on the 

shape and arrangement of clay/soil particles, reduces the flow rate of 
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chemical solutes through diffusion.  Since it is not possible to measure the 

tortuous flow path directly, the effect of tortuosity is typically 

incorporated into the value of diffusivity coefficient of solute flow as 

suggested by many researchers (Shackelford and Daniel, 1991; Quigley 

and Rowe, 1986; Quigley, et al. 1987). 

 

(c) Fluidity or mobility of the fluid adjacent to clay particles: The viscosity of 

the fluid adjacent to the clay mineral surfaces is higher than that of bulk 

fluid because of the immobility of the clay surface water and the higher 

adsorption capacity of the negatively charged clay particle surfaces.  A 

fluidity factor (α) has been introduced by Kemper et al., (1964), Olsen et 

al., (1965) which reduces the diffusivity of chemical solutes through fine-

grained adsorptive clay particles. 

 

(d) Anion exclusion:  Electrical imbalance might occur on clay mineral 

surfaces due to the exclusion of anionic charges which are expelled from 

the pores between diffuse double layers when subjected to high stresses 

(Porter et al.,1960; Freeze and Cherry, 1979; Drever, 1982; Shackelford 

and Daniel, 1991).  However, it is not quite possible to separate the anion 

exclusion factor (γ) from other factors in determining the diffusivity. 

 

The only factor from the above list that can be readily measured for any clay 

material is porosity.   Therefore, the chemical mass flux due to diffusion through fine-

grained (non-reactive) clay can be written by adopting an effective diffusion coefficient, 

D*, which incorporates all other controlling factors as given in equation (7.5). 

    
x
CnDJ d ∂
∂
⋅−= *             (7.5) 
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The effective diffusion coefficient, D*, can be expressed with all the relevant 

factors including those expressed in equation (7.4) as given in the following equation 

(7.6). 

    ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅+

⋅⋅
= γατ

η rz
TfD*          (7.6) 

 

However, the transport of solutes that are subjected to chemical reactions or 

chemical exchanges (cation exchange for bentonite clay minerals), which are analogous 

to “reactive solutes,” differ from the transport of nonreactive solutes as calculated using 

equation (7.5).  In order to accommodate the effects of cation exchange on the clay 

mineral surfaces, an additional factor known as “retardation factor”, Rd, has been added 

in the diffusion formulation which inversely affects the flow of solutes as given in 

equation (7.7). 

    
x
C

R
nDJ

d
d ∂

∂
⋅−=

*             (7.7) 

 

The retardation factor can be defined in terms of partition coefficient Kp, as given 

by equation (7.8). 

    p
d

d K
n

R ⋅+=
ρ

1             (7.8) 

  The partition coefficient, Kp, is defined as the amount of a given constituent that is 

adsorbed or desorbed by a soil for a unit increase or decrease in the equilibrium 

concentration in solution (Mitchell, 1993, Shackelford and Daniel, 1991).   

Fick’s first law is only applicable for diffusive flux of solutes under steady-state 

condition when the concentration gradient within the medium does not change with time.  

The rate of change in concentration with time and distance within the transport medium, 

as shown in figure 7.4, is described by Fick’s second law which can be expressed 

mathematically for non-reactive solute diffusion as follows: 
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    2

2

*
x
CD

t
C

∂
∂

=
∂
∂             (7.9) 

 

Fick’s second law for reactive solutes, where adsorption on clay mineral surfaces 

occurs during diffusive transport in clay soil, can be expressed by equation (7.10) 

incorporating the retardation factor (Freeze and Cherry, 1979, Shackelford and Daniel, 

1991, Mitchell, 1993; and many others). 

  

 

 

 

 

 

 

 

 

Figure 7.4  Diffusion as a Function of Distance and Time 
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        (7.10) 

 

The value of (D* n/Rd), replaced by
A

D* , is defined as the “apparent diffusion 

coefficient” by many researchers (Quigley et al. 1987; Li and Gregory, 1974). 

 

 

7.1.2.1   Mathematical Solution to Diffusion Equation 

 

The partial (second order) differential equation (7.10) which has been solved 

mathematically by various researchers in the form of equation (7.11) as suggested by 

Ogata (1970) and Freeze and Cherry (1979) is most popular among engineers. 
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tD

xerf
tD

xerfc
C
C

AA
O *2

1
*2

−==         (7.11) 

where C is the concentration at any time, Co is the constant supply concentration, and x is 

the distance of travel at time t.  The initial concentration of the medium through which 

diffusion occurs is considered to be zero at t = 0.  Equation (7.11) can also be fitted to a 

forward difference numerical solution which can be easily implemented in a spreadsheet 

as outlined below. 

The purpose of solving the differential equation would be to calculate the 

concentration of solute (Cx,t)  at any depth of the clay medium as time progresses.  The 

subscripts (x,t) of concentration C, have been changed so as to provide more arithmetic 

representation as follows: 

 

  
(time)                                   
(depth)       where,,,

tj
xiCC jitx

→

→⇒
  

 

Since the solution is required for 1-D vertical diffusion flow, the clay layer has 

been divided into a number of thin layers with a distance or depth of ∆x.  It is first 

required to calculate the concentration at 1, +jiC  based on neighboring locations on 

previous time as ,, ,,1 jiji CC − and jiC ,1+ as follows:  

 

   

    

 

 

 

 

To find ( )22 / dxCd  in a finite difference scheme, the concentration function        

C = f(x) about point i can be expanded using Taylor’s series expansion. 
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Adding equations (7.12) and (7.13) would result in equation (7.14). 
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Since the value of 2x∆ is small, the value of 4x∆ is even smaller and can therefore 

be neglected.  By rearranging equation (7.14), the expression of ( )22 / xC ∂∂  can be 

written as follows: 
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The partial differential term on the left side of Fick’s second law in equation 

(7.10) can be refined as follows:  
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By substituting equations (7.15) and (7.16) into equation (7.10), the concentration 

of solute at any location i after an infinitesimal time interval ∆t can be calculated using 

equation (7.17). 
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It can be seen from equation (7.17) that the value of concentration at a node at the 

next time step (t + ∆t) is determined from the values at the current time at the three 

adjacent nodes (i-1, i, and i+1).  In this formulation, ∆t is the incremental time step in the 

numerical solution, and ∆x is the increment in space in the direction, x. 

Boundary conditions on the sides of the clay medium during diffusion play an 

important role in calculating and representing graphically the diffusion profile with the 

variation of time during the transient period before achieving steady-state condition.  In 

this research, a source of constant concentration, Co, has been applied and the 
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concentration at a depth is presented in proportion to the initial concentration, in the form 

of C/Co, as shown later in the chapter.  Graphs are plotted to show the change in 

concentration as isochrones of C/Co with respect to elapsed time.   

 

 

7.1.3 Chemico-Osmotic Flow 

 

Osmosis flow is considered when the clay material acts like a semipermeable 

membrane.  Osmosis is a process when a membrane restricts the passage of solutes while 

allowing the flow of solvent due to the difference in concentration of the solvent between 

the both sides.  The transport of solvent (eg. water) stops when the concentrations of the 

solutions on both sides are the same, or when the hydraulic pressure across the 

membranes equals the osmotic pressure difference between the two solutions, as sketched 

in figure 7.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5  Chemico-Osmosis of Solute Transport 

 

It can be seen from figure 7.5 that the chemico-osmosis phenomenon counteracts 

the flow of solute and therefore reduces the contaminant outward flux (Malusis et al., 

2001; Shackelford et al., 2001).   
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The chemico-osmosis efficiency coefficient, ω, also known as the reflection 

coefficient, σ, is defined as the ratio of the pressure difference induced across the 

membrane as a result of prohibiting chemico-osmotic flux of solution (∆P) to the 

theoretical chemico-osmotic pressure difference across an ‘ideal’ semipermeable 

membrane (∆π) subjected to an applied difference in solute concentration as shown in 

equation (7.18) (Malusis et al. 2003; Keijer, 2000). 

    
π

ω
∆
∆

=
P               (7.18) 

It can also be defined as the ratio of the developed hydraulic pressure over the 

applied osmotic pressure after equilibrium i.e. at zero solution flux (Keijer, 2000).  The 

chemico-osmotic efficiency coefficient, ω, ranges from zero (ω =0) for non-membranes 

to unity (ω =1) for ‘ideal’ membranes that completely restrict the passage of solutes.  

Clay minerals can be considered to be ‘non-ideal’ membranes with ω < 1. 

The theoretical value of osmotic pressure (∆π) is calculated with respect to 

concentration variation at the membrane boundaries by the van’t Hoff equation (7.19) 

(Malusis and Shackelford, 2002; Mitchell, 1993). 

    ( )∑
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−=∆
N

i
LiHi CCRT

1
,,π           (7.19) 

where, R = the universal gas constant [8.314 J mol-1K-1 or 0.0821 atm mol-1K-1], T = the 

absolute temperature [K], Ci,H = the initial high concentration of solute i species [mol L-

3], and Ci,L = the initial low concentration of solute i species on the other side of the 

membrane.  The induced hydraulic pressure can be calculated or measured from the 

levels of the standpipes connected to the solutions on both sides of the membrane, which 

varies with time until it reaches equilibrium with constant elevations of solution on both 

sides.   

A steady-state solute flux through the semipermeable clay specimen is established 

and maintained when (a) the osmotic pressure is counterbalanced by the hydraulic 

pressure and (b) constant flow of solute diffusion occurs due to the difference in 

concentration gradient. 
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7.1.4 Determination of Diffusion Parameters 

 

The developed hydraulic pressure due to osmosis can be measured by observing 

the solution levels of the higher concentrated standpipe or by using a differential pressure 

transducer placed on both sides of the membrane (Shackelford and Lee, 2003).  The 

pressure gradually increases with time until it reaches its peak value and then decreases 

due to diffusion of solute until it reaches its steady-state condition.  A typical graph of 

these processes with respect to induced chemico-osmotic pressure (∆P) and elapsed time 

is drawn in figure 7.6 (Shackelford and Lee, 2003). 

During the process of solute transport due to diffusion and chemico-osmosis, the 

concentration of the solution is measured from the concentration of individual species of 

solute.  In the steady-state condition, the measured concentrations for a given solute are 

converted to cumulative mass per unit cross-sectional area, Qt, as given in equation (7.20) 

(Malusis et al. 2001; Shackelford and Lee, 2003). 
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where, A = cross-sectional area of the specimen, ∆mi = mass increment of the solute 

species i collected over a time increment (∆t), ∆Vi = increment volume of the solution 

from which the outflow flux is collected, Ci = the concentration of the solute species in 

the incremental volume, and N = number of incremental samples (solution) collected 

during the total elapsed time, t.  The values of Qt calculated from equation (7.20) with 

respect to elapsed time can be plotted as shown in figure 7.6 (Shackelford and Lee, 2003; 

Malusis et al., 2001). 

It is seen from figure 7.7 that the constant slope line, which represents the steady-

state diffusion, intersects with the time axis at tL , commonly known as lag time 

(Shackelford, 1991; Malusis et al., 2001).  The time, tss, in figure 7.7 denotes the time 

required for steady-state diffusion or the time until which transient diffusion occurs 

within the specimen due to chemico-osmosis of the semipermeable clay membrane. 
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Figure 7.6  Induced Chemico-Osmotic Pressure Observed for Clay Membranes 
(Shackelford and Lee, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.7  Cumulative Solute Mass Through Clay Specimen due to Diffusion 

(Shackelford and Lee, 2003; Malusis et al., 2001) 
 

The analytical solution for cumulative mass flux (Qt) due to diffusion in 1-D 

direction under steady-state condition has been investigated by many researchers.   The 

expression given in equation (7.21) by Crank (1975) and Shackelford (1991) is applicable 

for a constant source concentration, Co, and a perfectly flushing boundary condition 

(concentration of solute is kept zero). 
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where, n = the specimen porosity, L = length or thickness of the specimen, D* = effective 

diffusion coefficient, Rd = the retardation factor, and t = total elapsed time of diffusion 

flow.  The slope ( )tQt ∆∆ /  of figure (7.6) which represents the steady-state diffusion 

condition is obtained by best-fit regression of the straight portion of the graph.  The value 

of effective diffusion coefficient, D*, of any solute species can be computed using 

equation (7.21) by considering the term ( )6/od LCnR  as zero at steady-state condition, 

which gives the following equation (7.22) 
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The value of retardation factor, Rd, of any solute species can be computed by 

using equation (7.21) and lag time, tL, at time intersection when Qt = 0 as follows:  

    Ld t
L
DR 2

*6
=              (7.23) 

The value of D* calculated from equation (7.22) is used to evaluate the value of 

Rd from equation (7.23). 

The total solute mass flux of any dissolved chemical species (i), Ji, through low 

permeability clay due to advection, chemico-osmosis, and diffusion can be written as 

follows (Mitchell, 1993; Malusis and Shackelford, 2002, 2004): 

  ( )
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nDCqCqJJJJ

d
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−+−=++=
,,,, *1 ππ ω     (7.24) 

where, Ja,j = advection solute flux due to hydraulic gradient (ih), ω = chemico-osmotic 

efficiency coefficient (0 ≤ ω ≤ 1), qh = Darcy’s flux (=khih, where kh = hydraulic 

coefficient), Jπ = chemico-osmotic solute flux, qπ [= ωkhiπ, where iπ  = the gradient in 

chemico-osmotic pressure head] is the chemico-osmotic solute flux for a unit difference 

in concentration from lower solute concentration to higher solute concentration (i.e., 
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opposite to the direction of solute diffusion), n = porosity, 
iA

D
,

* = effective salt-diffusion 

coefficient, and Ci = initial influent molar solute concentration. 

The chemico-osmotic coefficient controls the types of flow to be considered for 

evaluating the solute mass through the semipermeable membrane barriers.  If the value of 

ω is close to zero (i.e. non-membrane, permeable layer), then, qπ → 0, and equation 

(7.24) would become the conventional advection-diffusion solute mass flux expression as 

given in equation (7.25). 
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       (7.25) 

However, when the value of ω is close to unity (i.e. ideal membrane, impermeable 

layer), then, the advection flow would be zero and the chemico-osmotic flux and 

diffusion will become the same which would cancel each other, eventually causing the 

resultant solute flux of equation (7.24) to become zero (J →0) (Malusis and Shackelford, 

2003).   

 

 

7.2  Analysis of Diffusion Test Results 

 

  Analysis of diffusion test results was carried out in order to determine the various 

diffusion parameters, namely, effective diffusion coefficient of inorganic chemical 

elements (D*), retardation factor (Rd), partition coefficient (Kp), and apparent diffusion 

coefficient ( AD * ).  The following sub-sections describe these diffusion parameters in 

detail. 

 

 

7.2.1 Lag Time and Time to Steady-State 

 

  In order to obtain the lag time and time to steady-state as explained in figure 7.6, 

electrical conductivity values taken at regular interval of time were accumulated with 
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time of diffusion and plotted as cumulative electrical conductivity vs diffusion time, as 

shown in figures B.1(b) to B.11(b) in appendix B.  A straight line was drawn for each 

graph using linear regression, and the intercept of the straight line on the diffusion time 

axis was taken as the lag time.  The point where the curve generated during the initial 

stage of diffusion joins the straight line is known as time to steady-state.  The lag time 

and time to steady-state of diffusion tests carried out in this study are tabulated in Table 

7.1.    

  Since the values of lag time and time to steady-state vary with the void ratio, 

specimen thickness, and concentration of diffusant, diffusion tests were divided into three 

groups, as shown in Table 6.3 of Chapter six.  Lag time and time to steady-state are 

required to be measured as accurately as possible using consistent statistical methods.  

Because of the slight scattering in data from a theoretical straight line, even after 

attaining the steady-state condition, a sequential linear regression method was used to 

obtain the best possible straight line for the steady-state condition.  The sequential linear 

regression was carried progressively from the last 3 data points of the EC versus time 

data with an increment of one additional data point in successive regression cycles.  In 

each regression cycle, the coefficient of determination, R2, was calculated and compared 

with the next regression analysis coefficient until a significant deviation in R2 was found.  

The data point corresponding to the location where R2 starts to drop significantly from 

the previous regression cycle represents the time when the transient diffusion ends.  This 

data point also represents the transition from the initial non-linear curve to the linear 

slope line.   Therefore, the elapsed time associated with the earliest maximum R2 value of 

the regression analysis represents the time required to establish steady-state diffusion of 

the solute, tss, as explained in figure 7.6. 

  The straight line representing the steady-state diffusion, obtained from the 

sequential linear regression, is then extended to the horizontal (time) axis, and the 

intercept value on the time scale is established as the lag time, tL, of the diffusion solute.  

A summary of the statistical methods for all the diffusion tests with R2 values are 

tabulated in Table 7.1. 
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 Table 7.1   Summary of Statistical Method for Steady-State Diffusion 

Test No. Number of data 

points used 

R2 Steady-state equation 

D-6 18 0.9982 Y = 382.82X  - 14913 

D-8 9 0.9978 Y = 566.66X – 25387 

D-9 16 0.9896 Y = 359.66X – 14468 

D-10 15 0.9959 Y = 453.78X - 17907 

D-11 17 0.9940 Y = 847.67X - 20905 

D-12 24 0.9979 Y = 1664.1X – 13584 

D-13 7 0.9904 Y = 756.82X – 40684 

D-14 23 0.9973 Y = 1116.7X – 15682 

D-16 17 0.9979 Y = 677.77X - 13165 

 

The time to steady-state and lag time obtained using the above statistical methods 

for all the diffusion tests conducted in this study are listed in Table 7.2 with 

corresponding void ratios of the test specimens.  The times to steady state are compared 

to theoretical values generated from the numerical analysis as explained later in this 

chapter.  The amount of influx coming out of the specimen after achieving the steady-

state condition is found to be constant for any interval of time as defined by the slope of 

the straight line drawn on the graphs shown in figures B.1(b) to B.11(b).  From the test 

results of group #3 of equal void ratio of test specimens, it was found that the lag time of 

cations follows the sequence Ca2+ < Na+ < K+ < Mg2+,  which means that the calcium 

cations lag time is the shortest, followed by sodium, potassium, and magnesium. 
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     Table 7.2  Lag Time and Time to Steady-State of Various Diffusants 

Group 

# 

Test 

number 

Source 

solution 

Void 

ratio 

Lag Time 

(days) 

Time to 

Steady-state 

(days) 

D-6 2M CaCl2 9.23 39 53 

D-11 2M CaCl2 14.35 25 36 

D-12 5M CaCl2 14.35 8 9 

 

 

1 

D-13 5M CaCl2 4.11 54 63 

D-10 2M NaCl 14.35 40 58 

D-14 5M NaCl 14.35 14 18 

 

2 

D-16 5M NaCl 6.67 19 26 

D-8 2M MgCl2 14.35 45 58 

D-9 2M KCl 14.35 40 58 

D-10 2M NaCl 14.35 40 58 

 

 

3 

D-11 2M CaCl2 14.35 25 36 

 

 

7.2.2 Diffusion Coefficient  

 

 Two types of diffusion coefficient, namely, effective diffusion coefficient (D*) and 

apparent diffusion coefficient ( AD * ) are calculated in this study.    The effective 

diffusion coefficient (D*) of any cation is calculated using equation 7.22 as follows: 
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The slope of the steady-state line as shown in figures B.1(b) to B.11(b) is 

converted from a change in electrical conductivity per unit time [microSiemen/day] to 

change of mass flux per unit area per unit time [mg/(cm2 x s)].  This conversion is carried 

out according to the following steps: 
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(a) The electrical conductivity in microsiemens is multiplied by 0.66 to obtain 

the mass flux concentration in ppm (mg/liter). 

(b) The mass flux in ppm (mg/liter) is multiplied by the volume of receptor 

solution (after dilution) to calculate the total mass flux in mg. 

(c) The total mass flux is distributed among its cations and anions 

components.  At steady-state condition, in order to fulfill the 

electroneutrality requirement, the charge flux of the anions (in this case is 

the chloride anion, Cl-) is of the same magnitude as the charge flux of the 

cations (that constituents the salt solution, namely, Na+,K+,Mg2+, and 

Ca2+) according to the following equation 7.26. 

cationcationanionanion zJzJ =       (7.26) 

where Janion and Jcation are the steady-state diffusive molar fluxes of anions 

and cations, and zanion and zcation are the charges of anions and cations 

respectively.  The steady-state diffusive molar flux of chloride (Cl-) anion 

will therefore be the same magnitude of the steady-state diffusive molar 

flux of monovalent cations and twice the magnitude of divalent cations.  

However, in order to obtain the mass fluxes of Cl-, the above ratios are 

required to be multiplied by the ratio of atomic weight of cation to the 

atomic weight of Cl-.  For example, for the NaCl solution, the magnitude 

of the steady-state diffusive mass flux of Cl- will be [= 1 x (23/35.453)] 

0.648 times the magnitude of the sodium (Na+) cation mass flux.    

Similarly, for CaCl2 solution, the ratio of mass flux for Ca2+ and Cl- at 

steady-state will be 1:2.26. 

(d) The value obtained in step 2 is divided by the cross-sectional area [cm2] of 

the clay specimen. 

(e) The units are them converted to a consistent set of unties to finally attain 

the unit of mg/(cm2 x s). 

After calculating the slope of the steady-state line in mg/(cm2 x s) for a particular 

cation mass flux per unit area per duration of diffusion, the source concentration of the 

same cation, Co,  is then calculated in mg/cm3.  For example, for a 2M CaCl2 solution, the 
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theoretical value of Co would be [= 80,000 ppm = 80,000 mg/liter = 80,000 mg / 1000 

cm3 ] = 80 mg/cm3.   The value of [L/(nCo)] is then calculated in cm4/mg, since the 

porosity, n, is dimensionless, and the length or thickness of the specimen is in cm.  The 

units of the effective diffusion coefficient is therefore [mg/(cm2 x s) x cm4/mg ] or cm2/s 

which is then converted to the more commonly used unit of cm2/day as shown in the 

Table 7.3.   The source concentration, Co, was calculated based on individual cation 

concentration of the synthetic salt solution.  For example, for the 2M CaCl2 source 

solution, the concentration Co is 40,000 x 2 = 80,000 ppm or mg/l.   
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In order to calculate the apparent diffusion coefficient, ( AD * ), the relationships of 

retardation factor, Rd, with diffusion coefficients as given in equations 7.10 and 7.23 

were rearranged and the following expression was deduced in terms of the lag time and 

the physical dimensions of the test specimen.   

     
L

A t
nLD
6

*
2

=              (7.27) 

The values of apparent diffusion coefficients, ( AD * ), of various cations used as 

source solution during the diffusion tests through bentonite are calculated using equation 

7.27 and are tabulated in Table 7.4.  By comparing the tests D-8, D-9, D-10, and D-11 of 

the same porosity and thickness specimens using the same concentrated diffusants, it can 

be found that the apparent diffusion coefficient of Ca2+ (i.e. 6.49x10-13 m2/s) is higher 

than those of other cations due to its higher replaceability capacity as compared with 

others cations used in bentonite.   

 

 Table 7.4  Apparent Diffusion Coefficient for Various Cations in Bentonite 

Test 
No. 

Source 
Solution 

Porosity  
n 

L 
(cm) 

Lag Time 
(days) A

D*  

(m2/s) 
(Cations) 

D-6 2M CaCl2 0.902 0.8 39 2.86E-12 

D-8 2M MgCl2 0.935 0.3 45 3.61E-13 

D-9 2M KCl 0.935 0.3 40 4.06E-13 

D-10 2M NaCl 0.935 0.3 40 4.06E-13 

D-11 2M CaCl2 0.935 0.3 25 6.49E-13 

D-12 5M CaCl2 0.935 0.3 8 2.03E-12 

D-13 5M CaCl2 0.805 0.3 54 2.59E-13 

D-14 5M NaCl 0.935 0.3 14 1.16E-12 

D-16 5M NaCl 0.87 0.3 19 7.95E-13 
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7.2.3 Retardation Factor 

 

  Lag time is again used to calculate the retardation factor, Rd, of individual cations 

using the expression given in equation 7.23.  Retardation factor is directly proportional to 

both effective diffusion coefficient and lag time.   The values of retardation factor of all 

the cations used in this study are given in Table 7.5. 

 

      Table 7.5  Retardation Factor of Various Cations in Bentonite   

Test 
No. 

Source 
Solution 

L 
(cm) 

Porosity  
n 

Lag Time 
(days) 

D* 
m2/s 

(Cations) 

Rd 

(Cations)

D-6 2M CaCl2 0.8 0.902 39 5.45E-12 1.722 

D-8 2M MgCl2 0.3 0.935 45 6.61E-12 17.126 

D-9 2M KCl 0.3 0.935 40 2.94E-12 6.771 

D-10 2M NaCl 0.3 0.935 40 8.04E-12 18.522 

D-11 2M CaCl2 0.3 0.935 25 4.37E-12 6.287 

D-12 5M CaCl2 0.3 0.935 8 3.43E-12 1.580 

D-13 5M CaCl2 0.3 0.805 54 1.81E-12 5.633 

D-14 5M NaCl 0.3 0.935 14 7.91E-12 6.381 

D-16 5M NaCl 0.3 0.87 19 5.16E-12 5.649 

 

The retardation factor of all the individual cations is found to be more than unity, 

as listed in Table 7.4, which indicates that adsorption happens on the surface of clay 

platelets due to diffusion flow of the cations (Ca2+, Mg2+, K+, and Na+).    The smallest 

retardation factor was obtained for calcium cations with a highly porous bentonite 

specimen (D-12), probably because of its minimum resistance to diffusion on bentonite 

clay platelets at steady-state condition.    The 2M NaCl source solution produces the 

maximum retardation factor (test. D-10) indicating a maximum resistance to diffusion on 

bentonite clay platelets at steady-state condition.  The thickness of diffuse double layer is 

higher in sodium concentrated solution than in calcium concentrated solution, which 



www.manaraa.com

176 

results in a zone of immobility within the pore spaces.  By comparing test D-10 and D-14 

for 2M NaCl and 5M NaCl source solutions, respectively, it can be concluded that the 

higher concentrated solutions generate lower retardation factors because of the lower 

diffuse double layer thickness which eventually creates more available pore spaces for 

solute mobility.    The same trend can be observed in calcium solutions where higher 

concentrated source solution (D-12) develops lower retardation factor compared to lower 

concentrated source solution (D-11) for bentonite of the same porosity.   

 

 

7.2.4 Partition Coefficient 

 

  The partition coefficient, Kp, is defined as the ratio of the adsorbed concentration 

on the clay surfaces to the concentration of solution in equilibrium.  It be calculated using 

equation 7.8 after calculating the value of retardation factor of each individual cations.   

The values of partition coefficient of all the cations used in this study are given in Table 

7.6. 

  It can be highlighted from Table 7.6 that the minimum partition coefficient was 

found in calcium source solutions (e.g. Kp = 0.492 from D-12 of 5M CaCl2) which 

represents the minimum adsorption on the clay platelet surfaces.    The maximum 

partition coefficient (Kp = 14.88) was found in test D-10 with the 2M NaCl solution, 

indicating the maximum adsorption on the clay platelet surfaces.    It can be concluded, 

from tests D-11 and D-12 on 2M CaCl2 and 5M CaCl2 diffusants, respectively, that for 

clay specimens of the same porosity, the higher concentrated diffusant results in a lower 

partition coefficient due to the collapse of clay platelets as a result of shrinkage in the 

diffuse double layer and the formation of more aggregated particles where the total 

adsorption capacity per unit surface area decreases compared with the increasing 

concentration of pore fluid in equilibrium.  The 2M MgCl2 diffusant also resulted in a 

higher partition coefficient, which could be due to its higher hydrated ionic radius that 

gets obstructed in the diffuse double layer.  More diffusion tests are necessary in order to 



www.manaraa.com

177 

conclude the mechanism of diffusivity of magnesium and potassium cations in bentonite 

clay. 

 

 Table 7.6  Partition Coefficient of Various Cations in Bentonite 

Test 
No. 

Source 
solution 

porosity
n 

Bulk density 
ρb  (g/ml) 

Rd 

(Cations)
Kp 

(Cations) 

D-6 2M CaCl2 0.902 1.152 1.722 0.565 

D-8 2M MgCl2 0.935 1.101 17.126 13.694 

D-9 2M KCl 0.935 1.101 6.771 4.901 

D-10 2M NaCl 0.935 1.101 18.522 14.880 

D-11 2M CaCl2 0.935 1.101 6.287 4.490 

D-12 5M CaCl2 0.935 1.101 1.580 0.492 

D-13 5M CaCl2 0.805 1.303 5.633 2.862 

D-14 5M NaCl 0.935 1.101 6.381 4.570 

D-16 5M NaCl 0.87 1.202 5.649 3.365 

 

 

7.2.5 Diffusion Coefficient Through Numerical Solution 

 

  The apparent diffusion coefficient ( AD * ) obtained from the lag time method can 

be used in calculating the time to steady-state using numerical method, as explained in 

section 7.1.2.1.  By knowing the boundary conditions and dividing the specimen into a 

number of thin layers, the time to steady-state of any particular diffusant can be obtained 

by the forward numerical difference method, as expressed in equation (7.17).  A simple 

spreadsheet was formulated to calculate the diffusion mass flux at any particular time 

interval and location within the test specimen.  The process of calculating the diffusion 

mass flux through the bentonite clay specimen continues until a steady-state condition is 

reached which satisfies the constant mass flux of diffusant obtained from the 
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experiments.  In theory, complete steady state will never be reached, but a condition 

where the variation in concentration is almost linear with distance could be viewed as 

steady state. 

  The diffusion profile of Mg2+ cations using the 2M MgCl2 diffusant through 

bentonite is shown in figure 7.8.  Using the value of AD * obtained from the time-lag 

method, it can be found that the time required to achieve a constant diffusion mass flux at 

the receptor end is 56 days as compared to 58 days as calculated from lag time method  

given in Table 7.2 (D-8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8  Diffusion Profile of Mg2+ Ions Using Numerical Method 

 

  The time required to satisfy the conditions of steady-state, which were derived 

from the lag time method for K+ cations using a 2M KCl diffusant through bentonite 

specimen layer is 47 days as shown in figure 7.9.   However, it took about 58 days to 

reach the steady-state condition using the lag time analysis as shown in Table 7.2. 

 

 

  

0

0.5

1

1.5

2

2.5

3

0 10,000 20,000 30,000 40,000 50,000 60,000
Mg2+ (ppm)

D
ep

th
 (m

m
) .

t = 5
t = 10
t = 15
t = 20
t = 30
t = 40
t = 50
t = 55
t = 562M MgCl2 (n = 0.935), 

DA* = 3.61x10-13 m2/s



www.manaraa.com

179 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9  Diffusion Profile of K+ Ions Using Numerical Method 

 

  Figures 7.10 and 7.11 show the diffusion profiles of Na+ and Ca2+ cations 

respectively using numerical methods at various depths and durations until steady-state 

conditions as obtained by the lag time method were satisfied. The time to steady-state 

with Na+ cation using the numerical method was found to be 41 days while that for Ca2+ 

cation was about 35 days, compared to 58 days and 36 days, respectively, from the lag 

time method (Table 7.2).  It is therefore concluded that the numerical method under-

predicts the time to steady state, compared to the lag time method.  However, it can be 

seen from the slope of the diffusion profiles (figures 7.8 to 7.11) that further diffusion 

would result in a condition that better approximates the theoretical steady-state condition 

(straight line). 
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Figure 7.10  Diffusion Profile of Na+ Ions Using Numerical Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11  Diffusion Profile of Ca2+ Ions Using Numerical Method 
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CHAPTER EIGHT 
 
 

SUMMARY AND RECOMMENDATIONS 
 
 
8.1  Summary 
 

  While bentonite has been used as a flow barrier in many applications, its 

performance has been found to deteriorate when in contact with inorganic chemicals 

present in the leachate.  Attempts have been made to find a relation between bentonite 

performance, in terms of coefficient of permeability, and its geotechnical properties.  

Aggregated platelets size distribution obtained using hydrometer tests were found to be 

inconsistent with the liquid limits tests obtained using the cone penetrometer, with finer 

aggregated platelets producing higher liquid limit in the sequence of Na>K>Mg>Ca.  

However, this finding was limited to 0.1 molar concentrated electrolyte solutions of the 

above inorganic salts. 

No distinctive relationship was found to exist between the liquid limits and the 

coefficient of permeability obtained using both flexible wall and rigid wall permeameters.  

However, a strong correlation was found to exist between swell index and hydraulic 

conductivity and was attributed to the fact that similar mechanisms control both the 

swelling behavior and the hydraulic conductivity.  Swell index values obtained using 1 

molar concentration of various salt solutions (figure 3.22) were found to be in sequence 

with the values of coefficients of permeability obtained using rigid wall permeameter 

(Na<Mg<K<Ca).  It is therefore possible to compare the permeability of bentonite 

qualitatively by simply performing swell index tests with various electrolyte solutions at 

1 molar concentration. 

Hydraulic equilibrium was found to occur at around 2 to3 pore volumes of flow, 

which is earlier than the flow required for chemical equilibrium determined using 
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electrical conductivity measurements.  The coefficient of permeability measured from the 

flexible wall permeameter was found to be erratic because of the unpredictable and 

immeasurable shape of the swelling clay specimen during testing.  Significant swelling of 

specimen occurred, especially while performing permeability tests using water and lower 

concentrated electrolyte solutions.  Sidewall leakage channels, normally developing in 

rigid wall type experiments, can easily be eliminated when the bentonite clay specimens 

are hydrated and saturated for at least 48 hours before the actual permeation is carried 

out.  Swelling of the bentonite upon hydration acts as a self sealing mechanism for all 

internal and sidewall channels. 

Other than the type of permeameter, the most important factors affecting the 

permeability of bentonite are permeant chemical composition, void ratio, and initial 

hydration condition.  A distinct variation in coefficient of permeability is observed 

between permeants containing sodium and calcium cations.  Higher k values for 

permeants containing calcium is attributed to the fact that Ca2+ replaces monovalent 

cations, such as Na+, K+ and others attached on to the negatively charged clay surface, 

and thereby reduces the thickness of the diffuse double layer.  Relationships for the 

variation in coefficient of permeability between sodium and calcium solutions, as well as 

void ratio relationships, were established.  No significant variation of k of bentonite clay 

was observed upon applying hydraulic gradients at high as 3100, which discredits the 

concept of consolidation of bentonite at higher gradients. 

Pre-hydration of bentonite clay plays an important role in its permeability.  

Different structures of the platelets are formed when hydrating with water and various 

inorganic electrolyte solutions before the actual permeation of the solution through the 

specimen. 

Electrical conductivity of the effluent can be used as an indicator to monitor the 

amount of chemical retention during permeation by various inorganic electrolytes.  No 

significant correlation could be found between pH and electrical conductivity of the 

effluent during permeation with various electrolyte solutions. 

Various diffusion parameters, namely effective and apparent diffusion 

coefficients, retardation factor, and partition coefficient, of four different inorganic 
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chemical diffusants were investigated in this study.  The time to steady-state determined 

from the lag time method was found to be slightly shorter than that from the forward 

numerical difference method.  Calcium cations were found to diffuse faster than the other 

three cations (Na+, K+, Mg2+), as identified by their retardation factor values.  Higher 

sodium retardation factors indicate its strong affinity for the negatively charged clay 

surface for a longer period of time.  Maximum sodium cation adsorption on the clay 

surface was also confirmed by its highest partition coefficient compared to other cations 

used in this study.  Partition coefficients of the cations were found to be in the order of 

Ca2+ < K+ < Mg2+ < Na+. 

 

 

8.2  Design Recommendation 

 

Design recommendation can be made to bentonite clay of similar physical and 

engineering characteristics to be used as hydraulic barriers in the field.  The relevant 

physical, chemical and engineering properties necessary for design are Atterberg limits, 

and swell index.  Particle or aggregated clay platelets size distribution from hydrometer 

tests could be misleading because of the changes in specific gravity of the aggregated 

particles formed upon hydrated.  Other limitations of the hydrometer test stem from the 

use of Stokes’ law, which assumes the aggregated particle to be solid single spherical 

particle of pre-determined specific gravity. 

Liquid and plastic limits of the bentonite used in this study were found to be 

546% and 56%, respectively, while the free swell index determined using deionized 

water was 60 ml/2g of dry bentonite.  The free swell index can also be measured using 

various inorganic salt solutions to provide a rapid indicator of the coefficient of 

permeability of the bentonite when permeated with the corresponding solutions.  

However, the coefficients of permeability of bentonite with various inorganic chemical 

permeants should be applied with caution since statistical confidence levels are not 

available.  More data are required to validate the reproducibility of the test results before 

they can be used in design. 
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The amounts of chemicals retained in the saturated bentonite clay during 

permeation can be calculated using electrical conductivity measurements of the effluent, 

as described in Chapter 5, and correlate well with the weight increase of the actual 

bentonite clay after at the end of the test.  An equivalent flow of five pore volume 

permeation is required in order to predict the maximum chemical retention within the 

bentonite clay during advection flow.  The amounts of chemical retained in the case of 

divalent permeants are higher than in monovalent permeants.  If the total amount of 

chemicals in the total influent of any containment can be calculated by the designer, the 

chemical outflux can be predicted by subtracting the total amounts of chemical retained 

in the bentonite clay during the first five pore volumes or so.  The designer can also 

choose the thickness of the bentonite layer such that the retention capacity meets certain 

performance limits or criteria. 

Diffusion profiles of various inorganic chemicals can be simulated up to steady-

state conditions and allow the calculation of mass flux and diffusant concentration at any 

elapsed time and at any location within the bentonite clay barrier.  By plotting the 

normalized concentration in terms of initial concentration of inorganic source chemical 

[C/Co] versus depth factor normalized with respect to total depth [d/do], the diffusion 

mass flux can be predicted for any concentration of source diffusants at any depth within 

the bentonite clay medium.  The solution can be easily adapted to varying source 

concentrations since it can be easily programmed in a spreadsheet. 
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Figure A.1  Ionic Analysis of Permeability Test K-1 (a) Electrical Conductivity 
vs. Pore Volume and (b) pH vs. Pore Volume 
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Figure A.2  Ionic Analysis of Permeability Test K-2 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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(b) 
 
Figure A.3  Ionic Analysis of Permeability Test K-3 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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Figure A.4  Ionic Analysis of Permeability Test K-4 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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(b) 
 
Figure A.5  Ionic Analysis of Permeability Test K-5 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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Figure A.6  Ionic Analysis of Permeability Test K-6 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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Figure A.7  Ionic Analysis of Permeability Test K-7 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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Figure A.8  Ionic Analysis of Permeability Test K-8 (a) Electrical Conductivity 
vs. Pore Volume and (b) pH vs. Pore Volume 
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Figure A.9  Ionic Analysis of Permeability Test K-9 (a) Electrical Conductivity 
vs. Pore Volume and (b) pH vs. Pore Volume 
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(b) 
 
Figure A.10  Ionic Analysis of Permeability Test K-10 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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(b) 
 
Figure A.11  Ionic Analysis of Permeability Test K-11 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume 
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(b) 
 

Figure A.12  Ionic Analysis of Permeability Test K-12 (a) Electrical Conductivity 
vs. Pore Volume and (b) pH vs. Pore Volume 
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(b) 
 

Figure A.13  Ionic Analysis of Permeability Test K-13 (a) Electrical Conductivity 
vs. Pore Volume and (b) pH vs. Pore Volume 
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(b) 

 
Figure A.14  Ionic Analysis of Permeability Test K-14 (a) Electrical Conductivity 

vs. Pore Volume and (b) pH vs. Pore Volume
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Figure B.1  Diffusion Test Results for D-5 (a)  pH and Electrical Conductivity 

and (b) Cumulative EC versus Cumulative Diffusion Time  
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Figure B.2  Diffusion Test Results for D-6 (a)  pH and Electrical Conductivity 
and (b) Cumulative EC versus Cumulative Diffusion Time 
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Figure B.3  Diffusion Test Results for D-8 (a)  pH and Electrical Conductivity 
and (b) Cumulative EC versus Cumulative Diffusion Time 
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Figure B.4  Diffusion Test Results for D-9 (a)  pH and Electrical Conductivity 
and (b) Cumulative EC versus Cumulative Diffusion Time 
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Figure B.5(a) pH and Electrical Conductivity for D-10 
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Figure B.5  Diffusion Test Results for D-10 (a)  pH and Electrical Conductivity 
and (b) Cumulative EC versus Cumulative Diffusion Time 
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(b) 
 
Figure B.6  Diffusion Test Results for D-11 (a)  pH and Electrical Conductivity 

and (b) Cumulative EC versus Cumulative Diffusion Time 
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Figure B.7  Diffusion Test Results for D-12 (a)  pH and Electrical Conductivity 

and (b) Cumulative EC versus Cumulative Diffusion Time 
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Figure B.8  Diffusion Test Results for D-13 (a)  pH and Electrical Conductivity 
and (b) Cumulative EC versus Cumulative Diffusion Time 
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(b) 

 
Figure B.9  Diffusion Test Results for D-14 (a)  pH and Electrical Conductivity 

and (b) Cumulative EC versus Cumulative Diffusion Time 
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Figure B.10  Diffusion Test Results for D-16 (a)  pH and Electrical Conductivity 

and (b) Cumulative EC versus Cumulative Diffusion Time 
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(b) 
 
Figure B.11  Diffusion Test Results for D-17 (a)  pH and Electrical Conductivity 

and (b) Cumulative EC versus Cumulative Diffusion Time
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Figure C.1  Concentration of Various Cations in Effluent During Permeability (K-1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C.2  Concentration of Various Cations in Effluent During Permeability (K-2) 
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Figure C.3  Concentration of Various Cations in Effluent During Permeability (K-3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.4  Concentration of Various Cations in Effluent During Permeability (K-4)
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